
ECE 574 – Cluster Computing
Lecture 15

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

25 March 2021

http://web.eece.maine.edu/~vweaver

Announcements

• HW#8 (CUDA) will be posted.

• Project topics are due.

1

HW#6 Notes

• Graded. If still stuck I have a semi-solution I can send

• Took a long time to figure out what some of the issues

were

2

Raspberry Pi Cluster Notes

• A lot of sysadmin work maintaining a cluster

• Slurm issue with password files, weird it took 2 days to

kick in

• OOM. If cause crash let me know

Old Pi2s, so even though cluster has 24GB of RAM,

each node only 1GB (256MB/core)

3

CUDA – installing

• On Linux need to install the proprietary NVIDIA drivers

• Have to specify nonfree on Debian.

• Debates over the years whether NVIDIA can have

proprietrary drivers; no one sued yet. (Depends on

whether they are a ”derived work” or not. Linus refuses

to weigh in)

• Sometimes have issues where drivers won’t install

(currently having that issue on some of my machines)

4

Question: how does Hardware Raytrace
work

• NVIDIA: Optix Library

• You describe how rays behave

• Details are a bit hard to get

5

NVIDIA GPUs

• Quadro (Workstation) vs Geforce (Gaming)

◦ Quadro generally more RAM. higher Bus width

◦ Fancier Drivers

◦ Optimized for CAD type stuff and compute, rather

than games

◦ Higer reliability

◦ Quadro better support for double-precision floats

◦ More compute cores

◦ Power limits

6

NVIDIA Generations

• Kepler

• Maxwell

• Pascal

• Turing (consumer)/Volta (pro)

• Ampere

• Lovelace/Hopper

7

GPU hardware for the class

• NVIDIA Quadro P2000 in Skylake

◦ 5GB GDDR5, 160-bit, 140 GB/s

◦ 1024 cores, Pascal, PCIe3x16

◦ 75W, DirectX 12.0, Vulkan 1.0

• NVIDIA Quadro P400 in Haswell-EP

◦ 2GB GDDR5, 64-bit, up to 32 GB/s

◦ 256 cores, Pascal architecture

◦ 30W, OpenGL 4.5, DirectX 12.0

• NVIDIA Quadro K2200 in Quadro

8

◦ 4GB GDDR5, 128-bit 80 GB/s

◦ 640 cores, Maxwell architecture

◦ 68W, OpenGL 4.5, DirectX 11.2

9

Programming a GPGPU

• Create a “kernel” which is a small GPU program that

runs on a single thread. This will be run on many cores

at a time.

• Allocate memory on the GPU and copy input data to it

• Launch the kernel to run many times in parallel. The

threads operate in lockstep, all executing the same

instruction in each thread.

• How is conditional execution handled? a lot like on

ARM. If/then/else. If the particular thread does not

10

meet the condition, it just does nothing until the other

condition finishes executing.

• If more threads are needed the available on the GPU,

may need to break the problem up into smaller batches

of threads.

• Once computing is done, copy results back to the CPU.

11

CPU vs GPU Programming Difference

• The biggest difference: NO LOOPS

• You essentially collapse your loop, and run all the loop

iterations simultaneously.

12

Flow Control, Branches

• Only recently added to GPUs, but at a performance

penalty.

• Often a lot like ARM conditional execution

13

NVIDIA Terminology (CUDA)

• Thread: chunk of code running on GPU.

• Warp: group of thread running at same time in parallel

simultaneously

AMD calles this a “wavefront”

• Block: group of threads that need to run

• Grid: a group of thread blocks that need to finish before

next can be started

14

Terminology (cores)

• Confusing. Nvidia would say GTX285 had 240 stream

processors; what they mean is 30 cores, 8 SIMD units

per core.

15

CUDA Programming

• Since 2006

• Compute Unified Device Architecture

• See the NVIDIA “CUDA C Programming Guide”

• Use nvcc to compile

• .cu files. Note, technically C++ so watch for things like

new

16

CUDA Coding

• version compliance – can check version number. New

versions support more hardware but sometimes drop old

• nvcc – wrapper around gcc. global code compiled into

PTX (parallel thread execution) ISA

• can code in PTX code directly which is sort of like

assembly language. Won’t give out actual assembly

language. Why?

• CUDA C has mix of host and device code. Compiles the

global stuff to PTX, compiles the <<< ... >>> into

17

code that can launch the GPU code

• PTX code is JIT compiled into native by the device

driver

• You can control JIT with environment variables

• Only subset of C/C++ supported in the device code

18

CUDA Programming

• Heterogeneous programming – there is a host executing

a main body of code (a CPU) and it dispatches code to

run on a device (a GPU)

• CUDA assumes host and device each have own separate

DRAM memory

(newer cards can share address space via VM tricks)

• CUDA C extends C, define C functions ”kernels” that

are executed N times in parallel by N CUDA threads

19

CUDA Programming – Host vs Device

• *host* vs *device*

host code runs on CPU

device code runs on GPU

• Host code compiled by host compiler (gcc), device code

by custom NVidia compiler

20

CUDA Programming – Memory Allocation

• cudaMalloc() to allocate memory and pointers that can

be passed in

cudaMalloc((void **)&dev a,N*sizeof(int));

• cudaFree() at the end

• cudaMemcpy(dev a,a,N*sizeof(int),

cudaMemcpyHostToDevice);

• cudaMemcpy(c,dev c,N*sizeof(int),

cudaMemcpyDeviceToHost);

21

CUDA Hardware

• GPU is array of Streaming Multiprocessors (SMs)

• Program partitioned into blocks of threads. Blocks

execute independently from each other.

• Manages/Schedules/Executes threads in groups of 32

parallel threads (warps) (weaving terminology) (no

relation)

• Threads have own PC, registers, etc, and can execute

independently

• When SM given thread block, partitions to warps and

22

each warp gets scheduled

• One common instruction at a time. If diverge in control

flow, each way executed and thread not taking that path

just waits.

• Full context stored with each warp; if warp is not ready

(waiting for memory) then it may be stopped and another

warp that’s ready can be run

23

CUDA Threads

• kernel defined using global declaration. When

called use <<<...>>> to specify number of threads

• each thread that is called is assigned a unique ThreadID

Use threadIdx to find what thread you are and act

accordingly

24

CUDA Programming – Kernels

• global parameters to function – means pass to

CUDA compiler

• call global function like this add<<<1,1>>>(args)

where first inside brackets is number of blocks, second

is threads per block

• Can get block number with blockIdx.x and thread index

with threadIdx.x

• Can have 65536 blocks and 512 threads (At least in

2010)

25

• Why threads vs blocks?

Shared memory, block specific

shared to specify

• syncthreads() is a barrier to make sure all threads

finish before continuing

26

CUDA Debugging

• Can download special cuda-gdb from NVIDIA

• Plain printf debugging doesn’t really work

27

CUDA Example
__global__ void VecAdd(float *A, float *B, float *C) {

int i = threadIdx.x;

if (i<N) // don’t execute out of bounds

C[i]=A[i]+B[i];

}

int main(int argc , char **argv) {

....

/* Invoke N threads */

VecAdd <<<1,N>>>(A,B,C);

}

28

CUDA Example – multidimensional

• threadIdx is 3-component vector, can be seen as 1, 2 or

3 dimensional block of threads (thread block)

• Much like our sobel code, can look as 1D (just x), 2D,

(thread iD is ((y*xsize)+x) or (z*xsize*ysize)+y*xsize+x

• Weird syntax for doing 2 or 3d.

__global__ void MatAdd(float A[N][N], float B[N][N], float C[N][N])

{

int i=threadIdx.x;

int j=threadIdx.y;

C[i][j]=A[i][j]+B[i][j];

}

int numBlocks =1;

29

dim3 threadsPerBlock(N,N);

MatAdd <<<numBlocks , threadsPerBlock >>>(A,B,C);

• Each block made up of the threads. Can have multiple

levels of blocks too, can get block number with blockIdx

• Thread blocks operate independently, in any order. That

way can be scheduled across arbitrary number of cores

(depends how fancy your GPU is)

30

CUDA Memory

• Per-thread private local memory

• Shared memory visible to whole block (lifetime of block)

Is like a scratchpad, also faster

• Global memory

• also constant and texture spaces. Have special rules.

Texture can do some filtering and stuff

• Global, constant, and texture persistent across kernel

launches by same app.

31

More Coding

• No explicit initialization, done automatically first time

you do something (keep in mind if timing)

• Global Memory: linear or arrays.

◦ Arrays are textures

◦ Linear arrays are allocated with cudaMalloc(),

cudaFree()

◦ To transfer use cudaMemcpy()

◦ Also can be allocated cudaMallocPitch() cudaMalloc3D()

for alignment reasons

32

◦ Access by symbol (?)

• Shared memory, shared . Faster than Global also

device

Manually break your problem into smaller sizes

33

Misc

• Can lock host memory with cudaHostAlloc(). Pinned,

can’t be paged out. Can load store while kernel running

if case. Only so much available. Can be marked

writecombining. Not cached. So slow for host to read

(should only write) but speeds up PCI transaction.

34

Async Concurrent Execution

• Instead of serial/parallel/serial/parallel model

• Want to have CUDA running and host at same time, or

with mem transfers at same time

◦ Concurrent host/device: calls are async and return to

host before device done

◦ Concurrent kernel execution: newer devices can run

multiple kernels at once. Problem if use lots of memory

◦ Overlap of Data Transfer and Kernel execution

◦ Streams: sequence of commands that execute in order,

35

but can be interleaved with other streams

complicated way to set them up. Synchronization and

callbacks

36

Events

• Can create performance events to monitor timing

• PAPI can read out performance counters on some boards

• Often it’s for a full synchronous stream, can’t get values

mid-operation

• NVML can measure power and temp on some boards?

37

Multi-device system

• Can switch between active device

• More advanced systems can access each others device

memory

38

Other features

• Unified virtual address space (64 bit machines)

• Interprocess communication

• Error checking

39

Texture Memory

• Complex

40

3D Interop

• Can make results go to an OpenGL or Direct3D buffer

• Can then use CUDA results in your graphics program

41

Code Example

#include <stdio.h>

#define N 10

__global__ void add (int *a, int *b, int *c) {

int tid=blockIdx.x;

if (tid <N) {

c[tid]=a[tid]+b[tid];

}

}

int main(int arc , char **argv) {

int a[N],b[N],c[N];

int *dev_a ,*dev_b ,* dev_c;

int i;

/* Allocate memory on GPU */

42

cudaMalloc ((void **)& dev_a ,N*sizeof(int));

cudaMalloc ((void **)& dev_b ,N*sizeof(int));

cudaMalloc ((void **)& dev_c ,N*sizeof(int));

/* Fill the host arrays with values */

for(i=0;i<N;i++) {

a[i]=-i;

b[i]=i*i;

}

cudaMemcpy(dev_a ,a,N*sizeof(int),cudaMemcpyHostToDevice);

cudaMemcpy(dev_b ,b,N*sizeof(int),cudaMemcpyHostToDevice);

add <<<N,1>>>(dev_a ,dev_b ,dev_c);

cudaMemcpy(c,dev_c ,N*sizeof(int),cudaMemcpyDeviceToHost);

/* results */

for(i=0;i<N;i++) {

printf("%d+%d=%d\n",a[i],b[i],c[i]);

}

cudaFree(dev_a);

cudaFree(dev_b);

43

cudaFree(dev_c);

return 0;

}

44

Code Examples

• Go through examples

• Also show off nvidia-smi

45

CUDA Notes

• Nicely, we can use only block/thread for our results, even

on biggest files

• In past there was a limit of 64k blocks with “compute

version 2” but on “compute version 3” we can have up

to 2 billion

46

CUDA Examples

• Make builds them. .cu file, built with nvcc

• ./hello world bit of a silly example

• saxpy.c

single a*x+y

CPU GPU run 320000000 1.12s 2.06

• What happen if thread count too high? Max threads

per block 512 on Compute 2, 1024 on compute 3 Above

47

1024? Try saxpy block

• maximum block size 64k on Compute version 2, 2GB on

Compute Version 3 200,000 50,000 cpu = 4.5s gpu =

0.8s

48

CUDA Tools

• nvidia-smi. Various options. Usage, power usage, etc.

• nvprof ./hello world profiling

• nvvp visual profiler, can’t run over text console

• nvidia-smi --query-gpu=utilization.gpu,power.draw

--format=csv -lms 100

49

