
ECE 574 – Cluster Computing
Lecture 18 (part2)

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

6 April 2021

http://web.eece.maine.edu/~vweaver


Virtualization

• Lets you run multiple operating system images, giving

each the illusion that they are running on distinct

hardware.

• The OSes are context-switched between, much as

processes are context-switched under an OS

• When running inside a fully virtualized system, code

should not be able to tell it’s not running on bare metal

• The OSes are isolated and one crashing should not affect

1



any of others.

2



Why virtualize?

• Server consolidation – if you have multiple servers, each

using 10% of CPU, can put them on one big server

• Security – can give each critical task its own full OS

instance, so if something goes wrong it won’t affect the

others (this is harder to do with processes on an OS)

• Multiple OSes – can run multiple OSes (Windows, Linux,

Etc) on same machine at same time

• Ease of deployment – can make OS snapshots/images

3



and can quickly bring up and down on other machine

without having to install

4



Downsides of virtualization?

• Like any layer of abstraction: Overhead

• Slow, slow, slow

5



Terms

TODO: draw a diagram

• Guest – the operating system running inside a virtual

system

• Host – the operating system running on bare metal (may

be a hypervisor instead)

• VM (virtual machine) not virtual memory – the

software/hardware that provides the virtual hardware

interface

6



• Hypervisor – the software that controls bringing up and

controlling the guest operating systems

7



Are you ever running on real hardware?

• Some modern machines all you ever get to run on is the

VM

• VM (some power machines, ps3, never run on raw

hardware)

• Nested VM

• SMM mode (system maintenance mode)

8



Full Simulation

• Emulate the entire CPU and all hardware in software

• Full system simulators, such as Qemu

• What’s the downside of this? (slow, slow, slow)

9



Full Virtualization

• “Virtualize the CPU”

Run instructions as normal, but anything that gives away

it is virtual must trap to the hypervisor.

• Trap on access to hardware and simulate (with Qemu or

similar)

• KVM

• VMware

10



KVM

• Kernel-based virtual machine

• Hardware-assisted virtualization

• Requires CPU with hardware virtualization extensions

• Kernel acts as hypervisor

• Provides /dev/kvm

◦ Sets up address space

◦ Provide boot firmware

◦ Display hardware

11



Popek and Goldberg virtualization
requirements

Formal requirements for virtualizable third generation

architectures, Communications of the ACM, 1974.

• equivalence (fidelity): a program running under a VM

should behave identical to running on bare metal monitor

(VMM) should

• resource control (safety): the VM must control all

resources

12



• efficiency (performance): most instructions must execute

without intervention

13



Hardware Virtualization Extensions (CPU)

• IBM System/370 in 1972

• x86 chips by default were not, leak too much info.

• Intel VT-x and AMD-V

14



x86 virtualization

A Comparison of Software and Hardware Techniques for

x86 Virtualization by Adams and Agesen, ASPLOS 2006.

VMware managed full virt on 32-bit x86 using dynamic

binary instrumentation and segmentation.

• De-privledging: any attempt to read privileged info traps

and can be intercepted

• Shadow structures: need copies of things that can’t be

intercepted at CPU level, like page-tables. Need to trap

on access to these. True vs hidden page faults.

15



• x86 issues (assume protected mode)

◦ visible privileged state (see privilege mode when read

CS register; CPL (privilege level) lower 2 bits)

◦ Lack of traps when privileged instructions run at user-

level.

◦ popf (pop flags) changes both ALU and system flags

(IF, enable interrupts). When run non-privileged

ignores this, doesn’t trap.

• Intel VT-x and AMD-V

◦ 2006

◦ Adds virtual machine code block

16



◦ Intel: extended page tables (nested page tables)

◦ VMCS shadowing: allow nested VMs

17



Paravirtualization

• Hypervisor creates a special API that the guest OS uses

(operating system must be modified)

• Can be faster (talk directly to hypervisor, no need to

emulate hardware)

• Xen – uses stripped down Linux as hypervisor?

• Need specially compiled kernel that knows about

hypervisor interfaces

18



Containers

• ;Login article

• Look like you have own copy of OS, but just walled

off more thoroughly than normal Unix process. More

lightweight than VM

19



“The Cloud”

20



Containers

21



Docker

• Software can be installed on Linux to allow running

containers

• Lightweight virtualization, runs on top of normal Linux

but uses containers to isolate from other instances

• Uses cgroups, namespaces, union filesystems

• Unlike full virtualization, does not require another copy

of the OS

• Also a way of packaging

• Docker swarm – clusters? more like an automatic failover

22



type situation?

• Written in go

• Difference from virtualization?

◦ Doesn’t need full disk image (large)

◦ Doesn’t need large reserved memory range

◦ Diagram

(Host-Hypervisor)-(GuestOS/Libs/App)

(Host-Docker)-(Libs/apps)

23



Kubernetes

• How to pronounce? Word is Greek for captain

• Originally from google? Lighter version of project borg?

• Pods full of containers that can communicate locally, to

communicate remotely through an IP?

• Pods work together, use DNS and can share load

• Can run on top of Docker (but doesn’t have to)

• Also written in go

• Master node, worker nodes

24



Kubernetes vs Docker

• https://containerjournal.com/2019/01/14/kubernetes-vs-docker-a-primer/

25

https://containerjournal.com/2019/01/14/kubernetes-vs-docker-a-primer/


Traditional HPC

AB

↓

↓
C

26



Cloud-based HPC

AB

↓

↓
C

27



Cloud Tradeoffs

Pros

• No AC bill

• No electricity bill

• No need to spend $$$

on infrastructure

Cons

• Unexpected outages

• Data held hostage

• Infrastructure not

designed for HPC

28



Measuring Performance in the Cloud

First let’s just measure runtime

This is difficult because in virtualized environments

29



Simplified Model of Time Measurement

Hardware

Operating System

Application

Time

30



Then the VM gets involved

Hardware

Time

Application

Operating System

VM Layer

31



Then you have multiple VMs

Hardware

Time

VM Layer

App. ? ?

OS1 OS2 OS2OS1

32



So What Can We Do?

Hope we have exclusive access and measure wall-clock time.

33



Measuring Time Externally

• Ideally have local hardware access, root, and hooks into

the VM system

• Otherwise, you can sit there with a watch

• Danciu et al. send UDP packet to remote server

• Most of these are not possible in a true “cloud” setup

34



Measuring Time From Within Guest

• Use gettimeofday() or clock gettime()

• This might be the only interface we have

• How bad can it be?

35



Cloud Performance Measurement

With High Performance Computing moving to the cloud,

virtualization-aware performance measurement tools are a

necessity.

36



Performance API (PAPI)

• Widely-used, Cross-platform, Open-Source Performance

Measurement Library

⇒ Linux, AIX, FreeBSD, Solaris

⇒ x86, Power, ARM, MIPS

⇒ BlueGene P/Q, Cray

• Use directly or via high-level tools (TAU, Perfsuite,

Vampir, Scalasca, HPCToolkit)

37



PAPI-V

Virtualization-aware PAPI, or “PAPI-V” extends PAPI to

be useful in cloud environments.

• Report virtual system info

• Provide enhanced timing info

• Virtualization-related components

• Virtualized Counters

38



Virtual System Info

• Virtualization vendor obtained via CPUID, reported in

hw info.virtual vendor string

• Supported by KVM, Xen, VMware, etc.

• Info for user, helps with bug reports

39



The Timing Problem

• Time is an important component of most performance

measurements

• The concept of “time” gets fluid once virtualization is

involved

• Ideally you want wallclock time; this is hard to get

within a VM guest

40



PAPI Timing Interface

On Linux the timing functions use the POSIX timer

interface

• PAPI get real usec();

⇒clock gettime(CLOCK REALTIME);

• PAPI get virtual usec();

⇒clock gettime(CLOCK THREAD CPUTIME ID);

41



Timing Behavior on Bare Metal

0 2 4 6 8 10
Other CPU-hogging Apps Running

0

500000

1000000

T
im

e
 (

u
s
)

Time to run MMM, Actual Core2 Hardware

PAPI_get_real_usec()

PAPI_get_virt_usec()

42



Timing Behavior on Virtualized System

0 2 4 6 8 10
Other CPU-hogging VMs Running

0

500000

1000000

T
im

e
 (

u
s
)

Time to run MMM, Same Core2, KVM Guest

PAPI_get_real_usec()

PAPI_get_virt_usec()

43



Stealtime

What is needed is a way for accounting for time the VM

is scheduled out.

• Since 2.6.11 Linux can provide this stealtime information

• It is system wide, not per-process, which makes auto-

adjusting PAPI timing measurements problematic

• PAPI 5.0 provides a stealtime component

44



Timing Adjusted with Stealtime

0 2 4 6 8 10
Other CPU-hogging jobs Running

0

50000

100000

T
im

e 
(u

s)
Time to run MMM, Core2, KVM Guest

PAPI_get_real_usec()
PAPI_get_virt_usec()
System Stealtime
PAPI_get_virt_usec() adjusted for stealtime

45



Network Components

PAPI also has components for measuring Network I/O.

• Generic network component

• Infiniband component

• Myrinet component

46



Infiniband DirectPath Comparison

47



VMware Component

PAPI supports a component that provides access to

VMware-specific interfaces

• pseudo-performance counters – extra timing info via

rdpmc

• VMware guest SDK (ESX only) – provides various other

performance related measurements, including stealtime

48



Virtualized Performance Counters

The VM host can virtualize performance counter access by

trapping access to the MSRs, and saving/restoring values

when suspending/resuming VMs.

• KVM supports this as of Linux 3.2 with a sufficiently

recent version of the QEMU/KVM tool (with some

limitations)

• Xen supports this as of Linux 3.5

• VMware support is underway

49


