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Virtualization

• Lets you run multiple operating system images, giving

each the illusion that they are running on distinct

hardware.

• The OSes are context-switched between, much as

processes are context-switched under an OS

• When running inside a fully virtualized system, code

should not be able to tell it’s not running on bare metal

• The OSes are isolated and one crashing should not affect
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any of others.
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Why virtualize?

• Server consolidation – if you have multiple servers, each

using 10% of CPU, can put them on one big server

• Security – can give each critical task its own full OS

instance, so if something goes wrong it won’t affect the

others (this is harder to do with processes on an OS)

• Multiple OSes – can run multiple OSes (Windows, Linux,

Etc) on same machine at same time

• Ease of deployment – can make OS snapshots/images
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and can quickly bring up and down on other machine

without having to install
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Downsides of virtualization?

• Like any layer of abstraction: Overhead

• Slow, slow, slow
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Terms

TODO: draw a diagram

• Guest – the operating system running inside a virtual

system

• Host – the operating system running on bare metal (may

be a hypervisor instead)

• VM (virtual machine) not virtual memory – the

software/hardware that provides the virtual hardware

interface
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• Hypervisor – the software that controls bringing up and

controlling the guest operating systems
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Are you ever running on real hardware?

• Some modern machines all you ever get to run on is the

VM

• VM (some power machines, ps3, never run on raw

hardware)

• Nested VM

• SMM mode (system maintenance mode)
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Full Simulation

• Emulate the entire CPU and all hardware in software

• Full system simulators, such as Qemu

• What’s the downside of this? (slow, slow, slow)
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Full Virtualization

• “Virtualize the CPU”

Run instructions as normal, but anything that gives away

it is virtual must trap to the hypervisor.

• Trap on access to hardware and simulate (with Qemu or

similar)

• KVM

• VMware
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KVM

• Kernel-based virtual machine

• Hardware-assisted virtualization

• Requires CPU with hardware virtualization extensions

• Kernel acts as hypervisor

• Provides /dev/kvm

◦ Sets up address space

◦ Provide boot firmware

◦ Display hardware
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Popek and Goldberg virtualization
requirements

Formal requirements for virtualizable third generation

architectures, Communications of the ACM, 1974.

• equivalence (fidelity): a program running under a VM

should behave identical to running on bare metal monitor

(VMM) should

• resource control (safety): the VM must control all

resources
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• efficiency (performance): most instructions must execute

without intervention
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Hardware Virtualization Extensions (CPU)

• IBM System/370 in 1972

• x86 chips by default were not, leak too much info.

• Intel VT-x and AMD-V
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x86 virtualization

A Comparison of Software and Hardware Techniques for

x86 Virtualization by Adams and Agesen, ASPLOS 2006.

VMware managed full virt on 32-bit x86 using dynamic

binary instrumentation and segmentation.

• De-privledging: any attempt to read privileged info traps

and can be intercepted

• Shadow structures: need copies of things that can’t be

intercepted at CPU level, like page-tables. Need to trap

on access to these. True vs hidden page faults.
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• x86 issues (assume protected mode)

◦ visible privileged state (see privilege mode when read

CS register; CPL (privilege level) lower 2 bits)

◦ Lack of traps when privileged instructions run at user-

level.

◦ popf (pop flags) changes both ALU and system flags

(IF, enable interrupts). When run non-privileged

ignores this, doesn’t trap.

• Intel VT-x and AMD-V

◦ 2006

◦ Adds virtual machine code block
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◦ Intel: extended page tables (nested page tables)

◦ VMCS shadowing: allow nested VMs
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Paravirtualization

• Hypervisor creates a special API that the guest OS uses

(operating system must be modified)

• Can be faster (talk directly to hypervisor, no need to

emulate hardware)

• Xen – uses stripped down Linux as hypervisor?

• Need specially compiled kernel that knows about

hypervisor interfaces
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Containers

• ;Login article

• Look like you have own copy of OS, but just walled

off more thoroughly than normal Unix process. More

lightweight than VM
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“The Cloud”
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Containers
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Docker

• Software can be installed on Linux to allow running

containers

• Lightweight virtualization, runs on top of normal Linux

but uses containers to isolate from other instances

• Uses cgroups, namespaces, union filesystems

• Unlike full virtualization, does not require another copy

of the OS

• Also a way of packaging

• Docker swarm – clusters? more like an automatic failover
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type situation?

• Written in go

• Difference from virtualization?

◦ Doesn’t need full disk image (large)

◦ Doesn’t need large reserved memory range

◦ Diagram

(Host-Hypervisor)-(GuestOS/Libs/App)

(Host-Docker)-(Libs/apps)
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Kubernetes

• How to pronounce? Word is Greek for captain

• Originally from google? Lighter version of project borg?

• Pods full of containers that can communicate locally, to

communicate remotely through an IP?

• Pods work together, use DNS and can share load

• Can run on top of Docker (but doesn’t have to)

• Also written in go

• Master node, worker nodes
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Kubernetes vs Docker

• https://containerjournal.com/2019/01/14/kubernetes-vs-docker-a-primer/
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Traditional HPC
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Cloud-based HPC
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Cloud Tradeoffs

Pros

• No AC bill

• No electricity bill

• No need to spend $$$

on infrastructure

Cons

• Unexpected outages

• Data held hostage

• Infrastructure not

designed for HPC
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Measuring Performance in the Cloud

First let’s just measure runtime

This is difficult because in virtualized environments
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Simplified Model of Time Measurement

Hardware

Operating System

Application

Time
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Then the VM gets involved

Hardware

Time

Application

Operating System

VM Layer
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Then you have multiple VMs

Hardware

Time

VM Layer

App. ? ?

OS1 OS2 OS2OS1
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So What Can We Do?

Hope we have exclusive access and measure wall-clock time.
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Measuring Time Externally

• Ideally have local hardware access, root, and hooks into

the VM system

• Otherwise, you can sit there with a watch

• Danciu et al. send UDP packet to remote server

• Most of these are not possible in a true “cloud” setup
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Measuring Time From Within Guest

• Use gettimeofday() or clock gettime()

• This might be the only interface we have

• How bad can it be?
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Cloud Performance Measurement

With High Performance Computing moving to the cloud,

virtualization-aware performance measurement tools are a

necessity.
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Performance API (PAPI)

• Widely-used, Cross-platform, Open-Source Performance

Measurement Library

⇒ Linux, AIX, FreeBSD, Solaris

⇒ x86, Power, ARM, MIPS

⇒ BlueGene P/Q, Cray

• Use directly or via high-level tools (TAU, Perfsuite,

Vampir, Scalasca, HPCToolkit)
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PAPI-V

Virtualization-aware PAPI, or “PAPI-V” extends PAPI to

be useful in cloud environments.

• Report virtual system info

• Provide enhanced timing info

• Virtualization-related components

• Virtualized Counters
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Virtual System Info

• Virtualization vendor obtained via CPUID, reported in

hw info.virtual vendor string

• Supported by KVM, Xen, VMware, etc.

• Info for user, helps with bug reports
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The Timing Problem

• Time is an important component of most performance

measurements

• The concept of “time” gets fluid once virtualization is

involved

• Ideally you want wallclock time; this is hard to get

within a VM guest
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PAPI Timing Interface

On Linux the timing functions use the POSIX timer

interface

• PAPI get real usec();

⇒clock gettime(CLOCK REALTIME);

• PAPI get virtual usec();

⇒clock gettime(CLOCK THREAD CPUTIME ID);
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Timing Behavior on Bare Metal
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Timing Behavior on Virtualized System
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Stealtime

What is needed is a way for accounting for time the VM

is scheduled out.

• Since 2.6.11 Linux can provide this stealtime information

• It is system wide, not per-process, which makes auto-

adjusting PAPI timing measurements problematic

• PAPI 5.0 provides a stealtime component
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Timing Adjusted with Stealtime
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Network Components

PAPI also has components for measuring Network I/O.

• Generic network component

• Infiniband component

• Myrinet component
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Infiniband DirectPath Comparison

47



VMware Component

PAPI supports a component that provides access to

VMware-specific interfaces

• pseudo-performance counters – extra timing info via

rdpmc

• VMware guest SDK (ESX only) – provides various other

performance related measurements, including stealtime
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Virtualized Performance Counters

The VM host can virtualize performance counter access by

trapping access to the MSRs, and saving/restoring values

when suspending/resuming VMs.

• KVM supports this as of Linux 3.2 with a sufficiently

recent version of the QEMU/KVM tool (with some

limitations)

• Xen supports this as of Linux 3.5

• VMware support is underway

49


