
]

0



ECE 574 – Cluster Computing
Lecture 5

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

31 January 2023

1

https://web.eece.maine.edu/~vweaver


Announcements

• HW#2 was posted

2



Computer Architecture Review

3



Parallel Computing – Single Core

• Most code written for serial execution, one step at a

time

• You can re-write it to try to do things in parallel (we’ll

get to that)

• What if the hardware could take your serial code and try

to get parallelism out of it for you?

4



Simple CPUs

• Ran one instruction at a time.

• Could take one or multiple cycles (Instructions per Cycle

(IPC) 1.0 or less)

• Example – single instruction take 1-5 cycles?

Program Counter

Memory

+4

Address from

      ALU

Branch

Instruction

Decode

Opcode Immediate R0 R1 R2 Register File

ALU

Control

5



Code Example – C
int i;

int x[128];

for(i=0;i <128;i++) {

x[i]=0;

}

6



Code Example – ARM assembly
mov r0 ,#0 ; i=0

loop:

ldr r1 ,=x ; point r1 to X array

lsl r2 ,r0 ,#2 ; r2=i*4

mov r3 ,#0 ; value to store

str r3 ,[r1 ,r2] ; X[i]=0

add r0 ,r0 ,#1 ; i=i+1

cmp r0 ,#128 ; check if reached 128

bne loop ; loop if not equal

.bss

.lcomm x,128,4 ; reserve room for 128 ints

7



Optimization Aside

• How could we optimize?

• Code hoisting?

• ARM optimization

barrel shifter

auto-increment

• Loop unrolling?

• Writing 64-bits of zeros rather than 32-bits

8



Pipelined CPUs

• 5-stage MIPS pipeline

• From 2-stage to Pentium 4 31-stage

• Example – single instruction always take 5 cycles? But

what about on average? (Theoretical max IPC 1.0)

IF ID EX MEM WB

9



Pipelined CPUs

• IF = Instruction Fetch.

Fetch 32-bit instruction from L1-cache

• ID = Decode

• EX = execute (ALU, maybe shifter, multiplier, divide)

Memory address calculated

• MEM = Memory – if memory had to be accessed,

happens now.

• WB = register values written back to the register file

10



Data Hazards

Happen because instructions might depend on results from

instructions ahead of them in the pipeline that haven’t been

written back yet.

• RAW – “true” dependency – problem. Bypassing?

• WAR – “anti” dependency – not a problem if commit in

order

• WAW – “output” dependency – not a problem as long

as ordered

• RAR – not a problem

11



Structural Hazards

• CPU can’t just provide. Not enough multipliers for

example

12



Control Hazards

• How quickly can we know outcome of a branch

• Branch prediction? Branch delay slot?

13



Branch Prediction

• Predict (guess) if a branch is taken or not.

• What do we do if guess wrong? (have to have some way

to cancel and start over)

• Modern predictors can be very good, greater than 99%

• Designs are complex and could fill an entire class

14



Memory Delay

• Memory/cache is slow

• Need to bubble / Memory Delay Slot

15



The Memory Wall

• Wulf and McKee

• Processors getting faster more quickly than memory

• Processors can spend large amounts of time waiting for

memory to be available

• How do we hide this?

16



Caches

• Basic idea is that you have small, faster memories that

are closer to the CPU and much faster

• Data from main memory is cached in these caches

• Data is automatically brought in as needed.

Also can be pre-fetched, either explicitly by program or

by the hardware guessing.

• What are the downsides of pre-fetching?

• Modern systems often have multiple levels of cache.

Usually a small (32k or so each) L1 instruction and data,

17



a larger (128k?) shared L2, then L3 and even L4.

• Modern systems also might share caches between

processors, more on that later

• Again, could teach a whole class on caches

18



Exploiting Parallelism

• How can we take advantage of parallelism in the control

stream?

• Can we execute more than one instruction at a time?

19



Multi-Issue (Super-Scalar)

• Decode up to X instructions at a time, and if no

dependencies issue at same time.

• Dual issue example. Can have theoretical IPC of 2.0

• Can have unequal pipelines.

EX EX

MEM MEM

WB WB

Fetch

Decode

Ins Queue

20



Out-of-Order

• Tries to exploit instruction-level parallelism

• Instead of being stuck waiting for a resource to become

available for an instruction (cache, multiplier, etc) keep

executing instructions beyond as long as there are no

dependencies

• Need to insure that instructions commit in order

• What happens on exception? (interrupt, branch

mispredict, etc)

21



• Register Renaming

• Re-order buffer

• Speculative execution / Branch Prediction?

22



SIMD / Vector Instructions

• SISD – single instruction, single data, your normal serial

processor

• SIMD – single instruction, multiple data – one instruction

can act on many values in parallel

• MISD – multiple instruction, single data – wavefront or

pipeline? some debate about if this really exists

• MIMD – sort of like a cluster

23



SIMD / Vector Instructions

• x86: MMX/SSE/SSE2/AVX/AVX2

semi-related FMA

• MMX (mostly deprecated), AMD’s 3DNow!

(deprecated)

• PowerPC Altivec

• ARM: Neon

24



SSE / x86

• SSE (streaming SIMD): 128-bit registers XMM0 -

XMM7, can be used as 4 32-bit floats

• SSE2 : 2*64bit int or float, 4 * 32-bit int or float, 8x16

bit int, 16x8-bit int

• SSE3 : minor update, add dsp and others

• SSSE3 (the s is for supplemental): shuffle, horizontal

add

• SSE4 : popcnt, dot product

25



AVX / x86

• AVX (advanced vector extensions) – now 256 bits,

YMM0-YMM15 low bits are the XMM registers. Now

twice as many.

Also adds three operand instructions a=b+c

• AVX2 – 3 operand Fused-Multiply Add, more 256

instructions

• AVX-512 – version used on Xeon Phis (knights landing)

and Skylake – now 512 bits, ZMM0-ZMM31

26



SSE example (From Wikipedia)

Doing a 4 element single-prevision vector add would take

4 separate floating point adds:

vec_res.x = v1.x + v2.x;

vec_res.y = v1.y + v2.y;

vec_res.z = v1.z + v2.z;

vec_res.w = v1.w + v2.w;

With SSE you only need one add instruction:

movaps xmm0 , [v1] ;xmm0 = v1.w | v1.z | v1.y | v1.x

addps xmm0 , [v2] ;xmm0 = v1.w+v2.w | v1.z+v2.z | v1.y+v2.y | v1.x+v2.x

movaps [vec_res], xmm0

27



Intrinsics
__m256i in1;

/* vmovdqa (%rcx),%ymm1 */

__m256i filter_avx = _mm256_load_si256( (__m256i *) filter );

28



ARM NEON

• Cortex A8, optional on Cortex A9

• 64 or 128bit, but some procs break 128-bit into two

operations

• 8, 16, 32-bit ints, single-precision floating point

29



ARM Scalable Vector Extension (SVE)

• Scale from 128 to 2048 bits transparently

• 32 scalable registers Z0-Z31, bottom 128 bits V0-V31

NEON registers

16 predicate registers P0-P15, fault register

• int/double/float/half

• There are intrinsics

• Can also try -fvectorize with compiler

• SVE2 adds more instructions beyond HPC workloads

UDOT – for machine learning

30



TBL and TBX – computer vision

CADD and CMLA – baseband networking

BDEP and BEXT – genomics

MATCH and NMATCH – server

31



SIMD Benefits

• Can be faster (2, 4, 8, 16, etc. things at once)

32



SIMD Drawbacks

• Harder to code (assembly or clever compiler)

• Puts more pressure on memory.

• More registers to save at context switch

33


