ECE 574 — Cluster Computing
Lecture 8

Vince Weaver
https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

O February 2023

Announcements

e Homework #4 (pthreads) will be posted

Homework #4 Preview

e We will be parallelizing the code using pthreads

Homework #4 — Coarse Grained

e Before we calculated sobelx and sobely one after the
other

e Could we run both at the same time?

e Start two threads, one for sobelx, one for sobely

e Can we launch direct into combine when one finishes?
No, have to wait for both to finish first

e What is the max parallelism you can get here?

Homework #4 — Fine Grained

e Can we get more fine grained?

e Each pixel in sobel Is independent

e We can split things up, if we have 16 threads, give each
1/16 of the sobel array to work on

e [he hard part ends up being splitting up the work

e Be careful, have to remember to fixup at the end if not
evenly divisible

e Can parallelize combine as well

e Could you start the combine on parts already done while

-y 4

still finishing x and y? Yes, but the complexity of that
might not be worth it in the end.

Homework #4 — Dividing up the Work

e This is the hard part, there are a variety of ways to do it

e The way | suggest in this case is splitting up the array
into chunks. So if the image has 1024 rows and you are
running with 8 threads, then start each thread and give
it (1024/8) rows to work with

e Modify your sobel routine to take a start/end row
Have your Y loop run from start to end rather than
0..ysize

e To calculate start for thread t it would be something

-y 6

like:
start=(1024/8)*t; end=start+(1024/8)-1;

e This works for evenly divisible images. If it's not, the
easiest way is to just set the end of the last chunk to be
the total ysize rather than what you'd calculate.

e Note, with pthreads each thread needs its own copy of
the command line structure. Otherwise since it's global
state if you re-use it you'll have a race. The proper
way to do this is use calloc() (see the example code
pthread_join.c presented in class)

Pthread Programming

Useful links:

® https://hpc-tutorials.llnl.gov/posix/

® http://www.cs.cf.ac.uk/Dave/C/node31.html

Creating Threads

e Your initial process, as per normal, only includes one
thread

e pthread _create() creates a new thread

e You can call it anywhere, as many times as you want

pthread_create()

e pthread_create (thread,attr,start_routine,arg)
o pointer to a thread object (pthread_t) which is opaque
o an attr object (which can be NULL)
o a start_routine which is a C function called when it

starts

o an an arg argument to pass to the routine.

e Only can pass one argument. How can you pass more?
pointer to a structure.

e With attributes you can set things like scheduling policies

-y 10

e No routines for binding threads to specific cores, but
some implementations include optional non-portable way.
Also Linux has sched_setaffinity routine.

/Y 11

Terminating Threads

Ways to terminate threads:

e pthread_exit ()
e Return normally from its starting routine
e another thread uses pthread_cancel() on it

e The entire process is terminated (by ending, or calling
exit (), exit_group(), etc)

/Y 12

Thread Management

e pthread_join() lets a thread block until another one
finishes

e [he main thread can join all the children and wait until
they are done before continuing.

e Argument to a join is a specific thread to wait on
(so if waiting on four, have to have four calls to
pthread_join()

Stack Management

e Manage your own stack? Can get and set size.

e Be careful allocating too much on stack.
Will you run out of space? OS has things like auto-
commit that make this less likely

e oo little stack can be issue if lots of local vars

-y 14

Mutexes

e Type of lock, only one thread can own it at a time. Can
be used to avoid race conditions.

-y 15

Condition Variables

e A way to avoid spinning on a mutex

16

Example code

example code Is posted on course website.

17

Simple Pthread Example

See pthread_simple.c

e Hardcodes 5 threads
e Do they run in any specific order?

18

Simple Init Example

See pthread_init.c.

e Initializes 256MB of data. Number of threads from
command line.
Is this the most efficient way to init memory?

e \Why do we have the sleep call? Note: you'd never want
to write a real program using a sleep like that.

e Why errors if run on odd number?
Be sure when splitting up problem handle remainders.

/Y 19

Simple Join Example

e Can use join to make the master thread wait for the
others to finish.

e See pthread_join.c

e Second argument is return value, so can find out what
thread returned when finished (or error)

e Can only join “joinable” threads (PTHREAD_CREATE_JOINAB
By default all threads start out joinable

e In theory this means you need to always join a thread
otherwise the state leaks as it waits forever for you to

-y 20

join

Stack Example

How to see how much stack is available, and how to
change it if not enough.

See pthread_stack.c

-y 2

Mutex Example

See pthread_mutex.c for code w/o mutex (run with a
num greater than 1)
Then see pthread_mutex2.c for core w mutex

Creates a “thread pool” and the threads can request
more work when they finish.

-y 23

Mutex Info

e Can create mutexes two ways,

o Statically, when declared
pthread_mutex_t our_mutex = PTHREAD_MUTEX_INITIALIZER;

o Dynamically with pthread_mutex_init() which

allows setting mutex object attributes, attr.
he mutex is initially unlocked.

e Can specify protocol, priority ceiling, and if it's

shared /private.

e lock, unlock, trylock. Lock will spin until available,

-y o4

trylock is non-blocking.

25

Deadlock

When you have more than one lock, it is possible to end
up nesting locks in ways that lockup a program with both
threads getting stuck.

Thread 1 Thread 2
pthread_mutex_lock(&mutexl); | pthread_mutex_lock(&mutex2);
pthread_mutex_lock(&mutex2); | pthread_mutex_lock(&mutexl);

/Y 26

Condition Variable Example?

See pthread_cond.c

e Can have a thread start up sleeping on a lock, and wake
up when signaled by another thread.

-y 21

PAPI Example

See pthread_papi.c

e Do a time example, like in homework 47

e If using pthreads need to do:
PAPI_thread_init(pthread_self);

e Will also need to do a PAPI register_thread() iIn
each thread you start

/Y 28

Debugging

It can be hard to debug thread and locking issues
Valgrind can help with locks

29

Race Conditions

x=0; // times we’ve run
x=x+1; x=x+1;

ldr r0,x ldr r0,x
add r0,#1 add r0,#1
str r0,x str r0,x

e Shared counter address
RMW on ARM
Thread A reads value into reg
Context switch happens
Thread B reads value into reg, increments, writes out
Context switch back to A

30

Increments value, writes out

What happened?
What should value be?

31

Critical Sections

e \Want mutual exclusion, only one can access structure at
once

1.
2.
3.

no two processes can be inside critical section at once
no assumption can be made about speed of CPU

no process not in critical section may block other
processes

. no process should wait forever

-y 32

How to avoid

e Disable interrupts. Heavy handed, only works on single-
core machines.

e Locks/mutex/semaphore

-y 33

Mutex

e mutex_lock: if unlocked (0), then it sets lock and returns

If locked, returns 1, does not enter.
what do we do if locked? Busy wait? (spinlock) re-

schedule (yield)?

e mutex_unlock: sets variable to zero

-y 34

Semaphore

e Up/Down
e Wait in queue
e Blocking

e As lock frees, the job waiting is woken up

35

Locking Primitives

e fetch and add (bus lock for multiple cores), xadd (x86)
e test and set (atomically test value and set to 1)
e test and test and set

e compare-and-swap — Atomic swap instruction SWP
(ARM before v6, deprecated)

x86 CMPXCHG
Does both load and store in one instruction!

-y 36

Why bad? Longer interrupt latency (can't interrupt
atomic op)

Especially bad in multi-core

e load-link/store conditional
| oad a value from memory
_ater store instruction to same memory address. Only

succeeds if no other stores to that memory location in
Interim.

Idrex /strex (ARMv6 and later)

e Transactional Memory (mostly abandoned)

-y 37

Locking Primitives

e can be shown to be equivalent

e how swap works:
lock is O (free). r1=1; swap rl,lock
now r1=0 (was free), lock=1 (in use)
lock is 1 (not-free). r1=1, swap rl,lock
now r1=1 (not-free), lock still==1 (in use)

38

Memory Barriers

e Not a lock, but might be needed when doing locking

e Modern out-of-order processors can execute loads or
stores out-of-order

e What happens a load or store bypasses a lock instruction?
e Processor Memory Ordering Models, not fun

e Technically on BCM2835 we need a memory barrier any
time we switch between 1/O blocks (i.e. from serial

-y 39

to GPIO, etc.) according to documentation, otherwise
loads could return out of order

e Special assembly language instructions

-y 40

Deadlock

e Two processes both waiting for the other to finish, get
stuck

e One possibility is a bad combination of locks, program
gets stuck

e P1 takes Lock A. P2 takes Lock B. P1 then tries to take
lock B and P2 tries to take Lock A.

-y a1

Livelock

e Processes change state, but still no forward progress.

e Two people trying to avoid each other in a hall.

e Can be harder to detect

42

Starvation

e Not really a deadlock, but if there's a minor amount
of unfairness in the locking mechanism one process
might get “starved” (i.e. never get a chance to run)
even though the other processes are properly taking and
freeing the locks.

-y 43

How to avoid Deadlock

e Don't write buggy code
e Pre-emption (let one of the stuck processes run anyway)
e Rollback (checkpoint occasionally)
e What to do if it happens?
o Reboot the system
o Kill off stuck processes

-y ”

