
ECE 574 – Cluster Computing
Lecture 9

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

14 February 2023

http://web.eece.maine.edu/~vweaver

Announcements

• HW#4 was posted, due Friday

1

Homework #4 – Coarse Code

• Just make two threads, one for sobelx, one for sobely

• Join at end before calling combine

• This part of the homework is to make sure you

understand the basics of pthread programming

2

Homework #4 – Fine Code

• This is much harder

• You can do this any way you want, but below is a

suggested way

• If parallelizing for N threads you need to split up the

work N ways

• While it might be tempting to come up with a complex

scheme to have x, y, and combine all going at once, it

might be best to keep it simple (and that might actually

be faster)

3

• Easiest is to modify one of the loops to only run

a subset of the values. For example, the Y loop.

On thread0 run from 0..(ysize/N)-1, on thread1 from

(ysize/N)..((ysize/N)*2)-1, etc

• You can modify the parameter structure so it takes a

start and end value

• Have a loop that starts N threads, and calculates the

start/end values above and puts them into the parameter

struct before creating the thread

• Be sure for the last end value that you handle workloads

not divisible by N

4

• You will need to have N copies of the parameter struct

to use to pass to the N threads. You can’t re-use one, as

it’s global state and you’ll have a race condition. See the

pthread join.c example from last class for example

code of this being done

5

General Homework Notes – Copying Files

• For Linux/OSX easiest way to copy files from haswell-ep
to your local machine is something like:

scp -P2131 ece574-0@weaver-lab.eece.maine.edu:hw03_submit.tar.gz .

• On windows WinSCP is widely used

• There are various GUI SCP options for Linux/OSX too

but I’ve never used them so can’t particularly recommend

any.

6

OpenMP

A few good references:

• https://hpc-tutorials.llnl.gov/openmp/

• http://bisqwit.iki.fi/story/howto/openmp/

• http://people.math.umass.edu/~johnston/PHI_WG_2014/OpenMPSlides_tamu_sc.pdf

7

https://hpc-tutorials.llnl.gov/openmp/
http://bisqwit.iki.fi/story/howto/openmp/
http://people.math.umass.edu/~johnston/PHI_WG_2014/OpenMPSlides_tamu_sc.pdf

OpenMP

• Goal: parallelize serial code by just adding a few compiler

directives here and there

• No need to totally re-write code like you would with

pthread or MPI

8

OpenMP Background

• Shared memory multi-processing interface

• C, C++ and FORTRAN

• Industry standard made by lots of companies

• OpenMP 1.0 came out in 1997 (FORTRAN) or 1998

(C), now version 5.1 (2020)

• gcc support “recently” (2008?) donated, CLANG even

newer

• gcc added support in 4.2 (OpenMP 2.5)

4.4 (OpenMP 3.0), 4.7 (OpenMP 3.1), 4.9 (OpenMP

9

4.0), 5.0 (Offloading)

10

OpenMP

• Master thread with Fork/Join methodology

• Can possibly have nested threads (implementation

dependent).

• Can possibly have dynamic num of threads

(implementation dependent)

• Relaxed consistency, threads can cache local variables,

so if you need memory to be consistent might need to

flush it.

11

OpenMP Interface

• Compiler Directives

• Runtime Library Routines

• Environment Variables

12

Compiler Support

• On gcc, pass -fopenmp

• C: #pragma omp

• FORTRAN: C$OMP or !$OMP

13

Compiler Directives

• Spawning a parallel region

• Dividing blocks of code among threads

• Distributing loop iterations between threads

• Serializing sections of code

• Synchronization of work among threads

14

Library routines

• Need to #include <omp.h>

• Getting and setting the number of threads

• Getting a thread’s ID

• Getting and setting threads features

• Checking in in parallel region

• Checking nested parallelism

• Locking

• Wall clock measurements

15

Environment Variables

• Setting number of threads (OMP NUM THREADS = 4)

• Configuring loop iteration division

• Processor bindings

• Nested Parallelism settings

• Dynamic thread settings

• Stack size

• Wait policy

16

Simple Example

#include <stdio.h>

#include <stdlib.h>

#include <omp.h>

int main (int argc , char **argv) {

int nthreads ,tid;

/* Fork a parallel region , each thread having private copy of tid */

#pragma omp parallel private(tid)

{

tid=omp_get_thread_num ();

printf("\tInside of thread %d\n",tid);

if (tid ==0) {

nthreads=omp_get_num_threads ();

printf("This is the master thread , there are %d threads\n",

nthreads);

}

}

17

/* End of block , waits and joins automatically */

return 0;

}

18

Notes on the example

• PARALLEL directive creates a set of threads and leaves

the original thread the master, with tid 0.

• All threads will execute the code in parallel region

• There’s an implied barrier/join at end of parallel region.

Only the master continues after it.

• If any thread terminates in a parallel region, then all

threads will also terminate.

• You can’t goto into a parallel region.

• In C++ special rules on throw/catching

19

parallel directive
#pragma omp parallel [clause ...] newline

if (scalar_expression)

private (list)

shared (list)

default (shared | none)

firstprivate (list)

reduction (operator: list)

copyin (list)

num_threads (integer -expression)

structured_block

20

if

• if – you can do a check if (i==0)

If true parallel threads are created, otherwise serially

• Why do this? Maybe it’s only worth parallelizing if N

greater than 16 due to overhead, can put if (N>16)

then

21

Variable Scope

• When you enter a parallel section, which variables are

thread-local and which ones are globally visible?

• By default shared, but there are times you want per-

thread data and not globally visible (loop indices for

one)

• You specify in the parallel block how you want all of the

variables to behave

22

Variable Scope – private

• variables that are private

• The value is undefined at start and discarded at end

• think of it as though in the block for each thread a new

variable of the same name created and all references to

it are replaced by this local version

23

Variable Scope – shared

• variables seen by all threads

• can be written to by all threads

• Value at end is whatever the last thread wrote to it

24

Variable Scope – firstprivate

• just like private

• the private variable inside a parallel section ends up with

the value it had before the parallel section

25

Variable Scope – lastprivate

• the variable after the parallel section gets the value from

the last loop iteration

26

Variable Scope – copyin

• you can declare special “Threadprivate” values that hold

their value across parallel sections.

• Use this to copy the value in from the master thread.

27

Variable Scope – default behavior

• default – you can set to shared or none (more on C),

• none means you have to explicitly share or private each

var (makes it easier to catch bugs but more tedious)

28

Setting number of threads

• Evaluation of the IF clause

• Setting of the NUM THREADS clause

• Use of the omp set num threads() library function

• Setting of the OMP NUM THREADS environment variable

• Implementation default – usually the number of CPUs

on a node, though it could be dynamic (see next bullet).

• Threads are numbered from 0 (master thread) to N-1

29

How do you actually share work?

Could do work with this, split things up manually by

having a lock/critical section and divide up work per-

thread. But easier way?

30

Work-sharing Constructs

• Must be inside of a parallel directive

◦ do/for (do is Fortran, for is C)

◦ sections

◦ single – only executed by one thread

◦ workshare – iterates over F90 array (Fortran90 only)

31

For Example

#include <stdio.h>

#include <stdlib.h>

#include <omp.h>

static char *memory;

int main (int argc , char **argv) {

int num_threads =1;

int mem_size =256*1024*1024; /* 256 MB */

int i,tid ,nthreads;

/* Set number of threads from the command line */

if (argc >1) {

num_threads=atoi(argv [1]);

}

/* allocate memory */

memory=malloc(mem_size);

if (memory ==NULL) perror("allocating memory");

32

#pragma omp parallel shared(mem_size ,memory) private(i,tid)

{

tid=omp_get_thread_num ();

if (tid ==0) {

nthreads=omp_get_num_threads ();

printf("Initializing %d MB of memory using %d threads\n",

mem_size /(1024*1024) , nthreads);

}

#pragma omp for schedule(static) nowait

for (i=0; i < mem_size; i++)

memory[i]=0 xa5;

}

printf("Master thread exiting\n");

}

Note: loop must be simple. Integer expressions (nothing

33

super fancy). Comparison must be only regular equals or

greater/less. Iterator must be simple increment/decrement

or add/subtract.

Loop iterator should be private. Why? What happens

if all threads could update a global iterator?

34

Do/For
#pragma omp for [clause ...] newline

schedule (type [,chunk])

ordered

private (list)

firstprivate (list)

lastprivate (list)

shared (list)

reduction (operator: list)

collapse (n)

nowait

for_loop

35

Scheduling – Static

• By default, splits up into size
numthreads chunks statically.

• schedule (static,n) chunksize n

◦ assignment of iterations to threads decided once

(statically) at start of loop

◦ for example, if chunksize 10, and 100 size problem:

0-9 CPU 1, 10-19 CPU 2, 20-29 CPU3, 30-39 CPU4,

40-49 CPU1.

• But what if some finish faster than others?

36

Scheduling – Dynamic

• Allocates chunks as threads become free. Can have

much higher overhead though.

◦ dynamic – divided into chunks, dynamically assigned

threads as they finish

◦ guided – like dynamic but shrinking blocksize

why do this? When problem first starts lots of big

chunks left. But near end probably not even, could

end up with one thread getting large chunk and rest

none. Better load balancing.

37

Scheduling – Other

• runtime – from OMP SCHEDULE environment variable

• auto – compiler picks for you

38

Other Options for For

• nowait – threads do not wait at end of loop

• ordered – loops must execute in order they would in

serial code

• collapse – nested loops can be collapsed

if “perfectly nested” meaning nested with nothing inside

the nests. Compiler can turn this into one big loop

39

Data Dependencies

Loop-carried dependencies
for(i=0;i <100;i++) {

x=a[i]; /* no dependency (though careful if x is global) */

a[i]=b[i]; /* probably no dependency but on C can alias */

a[i]=a[i+1]; /* depends on next iteration of loop */

}

40

Shift example
for(i=0;i <1000;i++)

a[i]=a[i+1];

Can we parallelize this?

Equivalent, can we parallelize this?
for(i=0;i <1000;i++)

t[i]=a[i+1]

for(i=0;i <1000;i++)

a[i]=t[i]

More overhead, but can be done in parallel

41

