
ECE 574 – Cluster Computing
Lecture 12

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

23 February 2023

https://web.eece.maine.edu/~vweaver

Announcements

• Midterm Next Thursday (March 2nd)

More details/review in class Tuesday

• HW#4 Grades will be out soon

• HW#6 will be posted

• Q from last time, what happens if sent data corrupted?

MPI has no extra support for that, it relies on underlying

network to catch that. TCP/IP and ethernet have

checksums/CRC. It’s possibly more likely your system

RAM lacks ECC and data will get corrupted there rather

1

than on the network.

2

HW#4 Review

• Low-level C is a pain. Things like passing pointers to

double-indexed arrays, and (void *) casting.

I’d like to say you’ll never see this, but if you ever get a

job doing Linux kernel or similar low level work there’s a

lot of this that goes on.

• Hopefully you’ll find OpenMP is a lot simpler.

• Some results on a 10848x10824 NASA image I found:

3

bench Load convolve combine store

before 945,172 20,972,969 1,740,545 865,404

coarse(2) 952,647 10,752,946 1,785,945 882,353

fine 1 960,527 10,582,954 12,303,506 921,339

fine 2 5,418,575 6,255,203

fine 8 935,998 1,491,921 3,574,811 928,533

fine 16 729,125 2,097,431

fine 32 627,906 714,431
• Should see some speedup, even if not perfect.

Be sure your joins are *after* both threads started.

• Max speedup? Below, significant time in load/store

4

combine so even if perfect convolution...

Load time: 98257

Convolve time: 871411

Combine time: 266956

Store time: 107583

• Question: was an example of deadlock.

5

MPI continued

Some references

https://hpc-tutorials.llnl.gov/mpi/

http://moss.csc.ncsu.edu/~mueller/cluster/mpi.guide.pdf

https://cvw.cac.cornell.edu/MPIcc/default

6

https://hpc-tutorials.llnl.gov/mpi/
http://moss.csc.ncsu.edu/~mueller/cluster/mpi.guide.pdf
https://cvw.cac.cornell.edu/MPIcc/default

How to send data efficiently to all ranks?

• Rank 0 could send to each individual, take a while

• Some sort of tree, 0 to 1 and 2, 1 sends to 3 and 4, etc.

• Can we broadcast instead?

7

Collective Communication

• All must participate or there can be problems.

• Do not take tag arguments

• Can only operate on MPI defined data types, not custom

• Operations

◦ Synchronization – all processes wait

◦ Data Movement – broadcast, scatter-gather

scatter = take one structure and split among processes

gather = take data from all processes and combine it

◦ Reduction – one process combines results of all others

8

MPI Barrier()

• All processes wait at this point.

• MPI Barrier (comm)

9

MPI Bcast()

MPI_Bcast()
root

• MPI_Bcast (&buffer ,count ,datatype ,root ,comm);

• Sends data from the root rank to each other rank.

• Is blocking; when encountering a Bcast all nodes wait

until they have received the data.

• There is no need to receive; the root sends the data and

all other ranks will receive, just with the one command

10

MPI Scatter()

root
MPI_Scatter()

rank 0
send_data

recv_data

recv_data
rank 0

rank 1

rank 2

rank 3

recv_data

recv_data

• MPI_Scatter (&send_data ,sendcnt ,sendtype ,&recv_data ,

recvcnt ,recvtype ,root ,comm);

• Copies sendcnt sized chunks of sendbuf to each rank’s

recvbuf

• root also gets a share of data (just a local copy)

11

MPI Gather()

MPI_Gather()
root

recv_data

rank 2

send_data

send_data

send_data

rank 3
send_data

rank 1

rank 0

• MPI_Gather (&send_data ,sendcnt ,sendtype ,&recv_data ,

recvcount ,recvtype ,root ,comm);

• Copies sendcnt sized chunks of sendbuf from each rank

to recvbuf in root, offset by recvcount for full result

• NOTE values start at beginning of each rank’s sendbuf

12

Scatter/Gather Boundary issues

• *NOTE* If the size of the data you are sending is not

an even multiple of the number of ranks you’ll have to

manually handle the extra

• How?

◦ Have the root manually handle the extra at end?

◦ Pad your data to be a multiple of number of ranks and

ignore the extra?

◦ MPI_Scatterv() and MPI_Gatherv() routines let you send

vectors (chunks of varying length) but complex to use

13

MPI Reduce()

• MPI_Reduce(void* send_data , void* recv_data ,

int count , MPI_Datatype datatype , MPI_Op op ,

int root , MPI_Comm communicator);

• Operations

◦ MPI MAX,MPI MIN – max, min

◦ MPI SUM – sum

◦ MPI PROD – product

◦ MPI LAND, MPI BAND – logical/bitwise and

◦ MPI LOR,MPI BOR – logical/bitwise OR

◦ MPI LXOR,MPI BXOR – logical/bitwise XOR

14

◦ MPI MAXLOC,MPI MINLOC – value and location

◦ Can also create custom

15

MPI Allgather()

• Gathers, to all

• Equivalent of gathering back to root, then rebroadcasting

to all

16

MPI Allreduce()

• MPI_Allreduce(void* send_data , void* recv_data , int count ,

MPI_Datatype datatype , MPI_Op op , MPI_Comm communicator);

• Like an MPI Reduce followed by an MPI Bcast

• Once the reduction is done, broadcasts the results to all

processes

17

MPI Reduce scatter()

• Does a reduction, then scatters the results

18

MPI Alltoall()

• Scatter data from all to all

19

MPI Scatterv()

• Vector scatter

• Send non-contiguous chunks

• In addition to regular scatter parameters, a list of start

offsets and lengths.

20

MPI Scan()

• Lets you do partial reductions.

21

Custom Data Types

• You can create custom data types that aren’t the MPI

default, sort of like structures.

• Open question: can you just cast your data into integers

and uncast on the other side? This is not recommended

and might have issues on a heterogeneous cluster

22

Groups vs Communicators

• Can create custom groups if you don’t want to broadcast

to all.

• Use groups to create Communicators, then can use

instead of WORLD

23

Virtual Topologies

• Your workload might map to a geometric shape (grid or

graph)

• In a mesh type problem you might only want to talk to

the 4 surrounding ranks and none of the others, so might

be handy if can be placed in hardware to take advantage

of that

• Doesn’t have to match underlying hardware

24

Examples

See the provided tar file with example code.

25

Running MPI code

• mpiexec -np 4 ./mpi test

Runs on 4 ranks

note the space between np and 4 is important and things

won’t work if you leave it out

• You’ll often see mpirun instead. Some implementations

have that, but it’s not the official standard way.

26

Send Example

• mpi send.c

• Run with mpiexec -np 4 ./mpi send

• Sends 1 million integers (each with value of 1) to each

node

• Each adds up 1/4th then sends only the sum (a single

int) back

• Notice this is a lot like pthreads where we have to do a

lot of work manually.

• Things to note:

27

◦ MPI_Init() at start

passes command line args, on most implementations

this will essentially broadcast the command line args

across all ranks so

◦ MPI_Comm_size() to get number of ranks

◦ MPI_Comm_rank() to get our rank

◦ MPI_Send() in this case only from rank 0

◦ MPI_Recv() can use status value to get size, source, and

tag

28

Blocking vs NonBlock Example?

• mpi nonblock.c

29

Wtime (Wallclock Time) Example

• mpi wtime.c

• Same as previous example. but with timing

• Unlike PAPI, the time is returned as a floating point

value

30

Barrier Example

• mpi barrier.c

• Each machine sleeps some time based on rank

• All wait at barrier until last one arrives

• Note: seeing all printfs because in this case all ranks on

same machine. This might not happen when running on

a real cluster

31

Bcast Example

• mpi bcast.c

• Same buffer on each machine

• At the broadcast function, one sends its version of the

buffer and the rest wait until they receive the value.

• In the end they all have the same value

32

Scatter Example

• mpi scatter.c

• Instead of sending all of A, breaks it into chunks and

sends it to B in each rank.

• Note that while the program runs ordered as expected,

the printfs might not reflect this

33

Gather Example

• mpi gather.c

• Each rank has its own copy of A which it sets to entirely

its rank number

• Then a gather happens on rank0, of one int each. So

what should B have in it? (0, 1, 2, 3, ...)

34

Reduce Example

• mpi reduce.c

• Instead of waiting in a loop for tasks finishing and then

adding up the results one by one, use a reduction instead.

• Many MPI routines are convenience things that could be

done by a sequence of separate commands.

35

HW#6 Preview

• Suggested coarse implementation

◦ Get rank and size

◦ Load the jpeg. Only in Rank0. Could you load it in

all? Why or why not?

◦ Need to tell other processes the size of our images.

image.xsize, image.ysize, image.depth. Why? So can

allocate proper sized structures on each.

◦ How can do this? Just send 3 integers. Could set up

custom struct but not worth it. How send this array of

36

3 vars? Set up array. Bcast it? Send/receive to each,

one at a time? Which is most efficient?

◦ Allocate space for the output images
new_image.pixels=malloc(image.x*image.y*

image.depth*sizeof(char));

sobel_x.pixels

sobel_y.pixels

◦ Use MPI Bcast to broadcast image data from rank0

to other ranks. Note that Bcast acts as a send from

the root source (usually root 0) but as a receive on

all other ranks (there’s no need to separately have the

other ranks receive)
result = MPI_Bcast(image.pixels , /* buffer */

37

image.x*image.y*image.depth ,/* count */

MPI_CHAR , /* type */

0, /* root source */

MPI_COMM_WORLD);

◦ Split up the work, you know your rank and total, so if

4 and you are #2, then you should calculate for X/4,

so 0..(X/4-1), (x/4)..(x/4*2-1), etc. How to handle

non-even multiple? Last rank should calc extra

◦ Once it is done, send back. How? MPI Gather();
MPI_Gather(new_image.pixels , /* source buffer */

sobel_x.depth*sobel_x.x*

(sobel_x.y/numtasks), /* count */

MPI_CHAR , /* type */

sobel_x.pixels , /* receive buffer */

38

sobel_x.depth*sobel_x.x*

(sobel_x.y/numtasks), /* count */

MPI_CHAR , /* type */

0, /* root source */

MPI_COMM_WORLD);

Note, it gathers from the beginning of the buffer, but

put it in the right place on the root. Also, how to

handle the leftover bit?

◦ Suggest you just do combine in rank#0, will in next

HW do more fine grained

◦ Write out result. Remember to only write out on

rank#0 (what happens if do so on all?)

39

Additional notes on MPI

• Hard to think about. Running on different machine, so

setting variables *does not* get set on all, like it does

with OpenMP or pthreads

• Tricky: before you can send to rest, they have to know

how big of an area to allocate to store it in. How will

they know this?

• MPI does not give good error messages. OpenMPI worse

than MPICH. Will often get segfault, hang forever, or

40

weird stuff where it runs 4 single-threaded copies of

program rather than one 4-threaded

• Many of the commands are a bit non-intuitive

41

MPI Debugging (HW#6) notes

• MPI is *not* shared memory

• Picture having 4 nodes, each running a copy of your

program *without* MPI.

Also picture the various MPI routines as a network socket

(or web browser query).

Things initialized the same in all will have same values,

no need to initialize.

Things initialized in only one node will need to be

somehow broadcast for the values to be the same in all.

42

• Problems debugging memory issues.

Valgrind should work, but Debian compiles MPI with

checkpoint support which breaks Valgrind :(

Mpirun supposed to have -gdb option, doesn’t seem to

work.

• What does work is mpiexec -n num xterm -e gdb

./your app but this depends on you running X11 plus

logging into Haswell-EP with X forwarding (-Y) enabled

• The bug most people hit is improper bounds, leading to

segfault. You can debug that with printfs of your bounds

• MPI does give useful error messages sometimes

43

• Some of the problem is malloc/calloc

44

Other MPI Notes

• MPI Gather(sendarray, 100, MPI INT, rbuf, 100,

MPI INT, root, comm);

rbuf ignored on all but root

• All collective ops are blocking by default, so you don’t

need an implicit barrier

• MPI Gather(), same as if each process did an

MPI Send() and the root note did in a loop

MPI Receive() incrementing the offset.

45

• MPI Gather() aliasing

cannot gather into same pointer, will get an aliasing

error

Can use MPI IN PLACE instead of the send buffer on

rank0.

Why is this an error? Partly because you cannot alias in

Fortran. Just avoids potential memory copying errors.

What happens if your gathers overlap?

• Can you handle non-even buffer sizes with MPI Gather?

No. Two options.

◦ One, just handle in one of other threads (either master

46

or send/receive from other)

◦ Two, use MPI Gatherv() where you specify the

displacement and sizes of what you want to gather

47

