
ECE 574 – Cluster Computing
Lecture 13

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

28 February 2023

https://web.eece.maine.edu/~vweaver

Announcements

• HW#4, HW#5: still grading

• HW#6 posted, will be due 10th

1

HW#4 Review

• Difficult part was picking bounds

• Other difficult part was avoiding race condition when

passing parameters to the threads

◦ Usual way is to just allocate a patameter struct for

each thread

◦ Can do complex locking, though that’s not optimal

◦ Please don’t try to use usleep() to try to avoid the

race condition by playing with the timings. This is

extremely fragile and not a good idea.

2

• The example code problem is an example where deadlock

can occur

3

Midterm on 2 March 2023

• Can bring one page (8.5” by 11” one sided) of notes.

Otherwise closed notes, computers, cell-phones, Beowulf

cluster, etc.

• Performance

◦ Speedup, Parallel efficiency

◦ Strong and Weak scaling

• Definition of Distributed vs Shared Memory

• Know why changing order of loops can make things

faster

4

• Pthread Programming

◦ Know about race condition, deadlock

◦ Know roughly the layout of a pthreads program.

(define pthread t thread structures, pthread create,

pthread join)

◦ Know why you’d use a mutex.

• OpenMP Programming

◦ parallel directive

◦ scope

◦ section

◦ for directive

5

• Know about MPI

6

HW#6 Preview

• Suggested coarse implementation

◦ Get rank and size

◦ Load the jpeg. Only in Rank0. Could you load it in

all? Why or why not?

◦ Need to tell other processes the size of our images.

image.x, image.y, image.depth. Why? So can allocate

proper sized structures on each.

◦ How can do this? Just send 3 integers. Could set up

custom struct but not worth it. How send this array of

7

3 vars? Set up array. Bcast it? Send/receive to each,

one at a time? Which is most efficient?

◦ Allocate space for the output images
new_image.pixels=malloc(image.x*image.y*image.depth*sizeof(char));

sobel_x.pixels

sobel_y.pixels

◦ Use MPI Bcast to broadcast image data from rank0

to other ranks. Note that Bcast acts as a send from

the root source (usually root 0) but as a receive on

all other ranks (there’s no need to separately have the

other ranks receive)
result = MPI_Bcast(image.pixels , /* buffer */

image.x*image.y*image.depth , /* count */

MPI_CHAR , /* type */

0, /* root source */

8

MPI_COMM_WORLD);

◦ Split up the work, you know your rank and total, so if

4 and you are #2, then you should calculate for X/4,

so 0..(X/4-1), (x/4)..(x/4*2-1), etc. How to handle

non-even multiple? Last rank should calc extra

◦ Once it is done, send back. How? MPI Gather();
MPI_Gather(new_image.pixels , /* source buffer */

sobel_x.depth*sobel_x.x*(sobel_x.y/numtasks), /* count */

MPI_CHAR , /* type */

sobel_x.pixels , /* receive buffer */

sobel_x.depth*sobel_x.x*(sobel_x.y/numtasks), /* count */

MPI_CHAR , /* type */

0, /* root source */

MPI_COMM_WORLD);

Note, it gathers from the beginning of the buffer, but

9

put it in the right place on the root. Also, how to

handle the leftover bit?

◦ Suggest you just do combine in rank#0, will in next

HW do more fine grained

◦ Write out result. Remember to only write out on

rank#0 (what happens if do so on all?)

10

Additional notes on MPI

• Hard to think about. Running on different machine, so

setting variables *does not* get set on all, like it does

with OpenMP or pthreads

• Tricky: before you can send to rest, they have to know

how big of an area to allocate to store it in. How will

they know this?

• MPI does not give good error messages. OpenMPI worse

than MPICH. Will often get segfault, hang forever, or

11

weird stuff where it runs 4 single-threaded copies of

program rather than one 4-threaded

• Many of the commands are a bit non-intuitive

12

MPI Debugging (HW#6) notes

• MPI is *not* shared memory

• Picture having 4 nodes, each running a copy of your

program *without* MPI.

Also picture the various MPI routines as a network socket

(or web browser query).

Things initialized the same in all will have same values,

no need to initialize.

Things initialized in only one node will need to be

somehow broadcast for the values to be the same in all.

13

• Problems debugging memory issues.

Valgrind should work, but Debian compiles MPI with

checkpoint support which breaks Valgrind :(

Mpirun supposed to have -gdb option, doesn’t seem to

work.

• What does work is mpiexec -n num xterm -e gdb

./your app but this depends on you running X11 plus

logging into Haswell-EP with X forwarding (-Y) enabled

• The bug most people hit is improper bounds, leading to

segfault. You can debug that with printfs of your bounds

• MPI does give useful error messages sometimes

14

• Some of the problem is malloc/calloc

15

Other MPI Notes

• MPI Gather(sendarray, 100, MPI INT, rbuf, 100,

MPI INT, root, comm);

rbuf ignored on all but root

• All collective ops are blocking by default, so you don’t

need an implicit barrier

• MPI Gather(), same as if each process did an

MPI Send() and the root note did in a loop

MPI Receive() incrementing the offset.

16

• MPI Gather() aliasing

cannot gather into same pointer, will get an aliasing

error

Can use MPI IN PLACE instead of the send buffer on

rank0.

Why is this an error? Partly because you cannot alias in

Fortran. Just avoids potential memory copying errors.

What happens if your gathers overlap?

• Can you handle non-even buffer sizes with MPI Gather?

No. Two options.

◦ One, just handle in one of other threads (either master

17

or send/receive from other)

◦ Two, use MPI Gatherv() where you specify the

displacement and sizes of what you want to gather

18

