
ECE 574 – Cluster Computing
Lecture 15

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

9 March 2023

https://web.eece.maine.edu/~vweaver


Announcements

• Don’t forget HW#6. Extended to Monday

• HW#7 is going to follow immediately after break

(basically, fix HW#6 and then run on Pi cluster)

can’t extend that too much as we are going to move on

to CUDA/GPU

• Be careful deleting files on Haswell-EP, it’s not backed

up

1



Remember Project Topics Due

• Send e-mail with topic and group members by March

23rd (Thurs)

• Can work alone or in groups of 2 to 3

• Do something interesting parallel computing related

• Can use any operating system and written in any

language (asm, C, python, C++, Java, etc.)

• Coding, benchmarking

• Past projects: SIMD, parallelizing code, comparison of C

vs Python, parallelizing matlab code, calculating physical

2



constants in parallel, building own cluster, raytracing,

GPU shader coding

• Will be a final writeup, and then a 10 minute presentation

and demo in front of the class during last week of classes.

3



Not Quite done Grading Midterms Yet

4



Feedback on HW#5 – Results

• Results are fairly straightforward so won’t put them here

Lots of weird corner cases, ask why it doesn’t linear

scale? Dunno? Can you track it down? Sure, perf, look

at source code, etc, but it’s not easy

• Also should be running on an idle system and this isn’t

• Why did I have you print load/store time? Amdahl’s

law. Reduces overall potential speedup. Why does it

vary so much? Not sure

5



Feedback on HW#5

• Be sure your code compiles, and that it doesn’t crash

• OpenMP is supposed to be about taking existing correct

linear code and dropping some pragmas in to make it

parallel. You shouldn’t have to majorly re-write your

code.

◦ If you are checking your thread-id and doing things

based on it, it’s probably not doing things properly

◦ Will low-level messing about always work? (If you

have 8 threads and you ask for 2, are you guaranteed

6



they are 0 and 1?)

• If the homework says use sections, use sections.

Don’t use serial/tasks, or open-code your own sections

implementation.

• Don’t use nowait unless you know what you are doing

◦ Great place for a code comment

◦ “Because it crashes otherwise” is not a good reason

• Use of private vars.

◦ Possibly loop indices are always treated as private?

◦ Not sure how some of the solutions worked without

declaring sum to be private.

7



◦ Not sure if it’s compiler optimizations, or just luck

• Where you put your for (before d 0..2 or x 1..xsize), how

it interacts with static vs dynamic

• Putting parallelization in inner loops instead of outer?

Complex how this works? Implementation dependent?

Probably not recommended but seems to work. Maxes

out at total number of threads. Possibly some overhead

for starting parallel over and over

• Static vs Dynamic speed. Setting up dynamic has a lot

of overhead, and since our runs are quick and roughly

same size didn’t make a difference

8



• Reduction: you can use a reduction, but only if you are

summing up results from a loop. So if you’re using a

loop to do the sums

9



More HW#6 notes

• Current problem people are seeing is after gather the

lower parts of the image are shifted sideways (or shifted

in colors)

• This happens if you calculate the “count” value by doing

something like count=(ysize*xsize*depth)/ranks

• Doing that, when the rank doesn’t evenly divide,

you’ll grab data that starts mid-row and this will shift

everything over

• Instead you might want to do something like

10



count=(ysize/ranks)*(xsize*depth) which will make sure the count is

always a multiple of xsize*depth

11



Failure and Error Rate – Examples

12



Cassini Saturn Probe

• Gary M. Swift and Steven M. Guertin. “In-Flight

Observations of Multiple-Bit Upset in DRAMs””. Jet

Propulsion Laboratory

• Cassini, flight recorders, each with 2.5GB RAM

• Single bit error rate of 280 errors/day

13



Google Datacenter

• Google SIGMETRICS 2009 paper

• Schroeder, Bianca; Pinheiro, Eduardo; Weber, Wolf-

Dietrich (2009). “DRAM Errors in the Wild: A Large-

Scale Field Study”. SIGMETRICS/Performance (ACM).

• 25-70k errors per billion hours per megabit

• 5 single bit errors in 8GB per hour

14



Various Supercomputer

• http://www.computerworld.com/article/2493336/

computer-hardware/supercomputers-face-growing-resilience-problems.

html ASCI White when came out, MTBF 5hrs, got it to

55hrs

• “Analysis of the Tradeoffs between Energy and Run Time

for Multilevel Checkpointing” PMBS 2014

◦ Sequoia MTBF around 1 day

◦ Blue Waters: 2 per day,

◦ Titan MTBF: less than a day

15

http://www.computerworld.com/article/2493336/computer-hardware/supercomputers-face-growing-resilience-problems.html
http://www.computerworld.com/article/2493336/computer-hardware/supercomputers-face-growing-resilience-problems.html
http://www.computerworld.com/article/2493336/computer-hardware/supercomputers-face-growing-resilience-problems.html


◦ 20% of computation is recovering from failures (big

energy waste)

• Scalable In-memory Checkpoint with Automatic Restart

on Failures. Xiang Ni, Esteban Meneses, Laxmikant V.

Kal

Most of failures do not take down more than one node

Jaguar/Titan 92% crashes single-node crashes

16



SSMD/ORNL

• https://csmd.ornl.gov/highlight/failures-large-scale-systems-long-term-measurement-analysis-and-implications

• 2015

• 1.2 billion hours Jaguar/Titan/EOS

• MTBF can change over time, optimal checkpoint might

depend on this

• Temporal and Spatial Locality

◦ Temporal, fail at same time. Things like voltage surge,

OS panic, filesystem error

◦ Spatial, failure in same location. Cooling/overheat

17

https://csmd.ornl.gov/highlight/failures-large-scale-systems-long-term-measurement-analysis-and-implications


issues

18



Frontier Supercomputer

• 10 oct 2022

• https://www.datacenterdynamics.com/en/news/frontier-supercomputer-suffering-daily-hardware-failures-during-testing/

• This also mentioned in the SC top500 video

• Problems with MPI Cray fabric

• Possibly also GPU issue under load

• MTBF hours, not days. “one day MTBF would be

amazing”

19

https://www.datacenterdynamics.com/en/news/frontier-supercomputer-suffering-daily-hardware-failures-during-testing/


GPU Lifetimes

• “GPU Lifetimes on Titan Supercomputer: Survival

Analysis and Reliability” by Ostrouchov et al

• https://www.christian-engelmann.info/publications/

ostrouchov20gpu.pdf

• 18,688 GPUs do most of computing

• There have been three re-works

• Two to fix chassis issue

• One to fix resistors failing due to silver sulfide corrosion

• DBE (double bit errors) and OTB (off the bus errors,

20

https://www.christian-engelmann.info/publications/ostrouchov20gpu.pdf
https://www.christian-engelmann.info/publications/ostrouchov20gpu.pdf


i.e. GPU stop responding)

• MTBF for first batch around 3 years, but some fail more

quickly

• Survival Analysis methods (similar to those used in

medical field)

21



What can Software do to avoid HW
Problems

• Note that a lot of reliability bugs are very similar to

security bugs

• Programs crash due to out of bounds, memory overflows,

stack smashing

• Hardware is starting to add protections against these

types of things (Ryzen3 shadow stack)

22



Byzantine Failure

• Byzantine General Problem, Lamport et al

◦ Generals surround a city.

◦ Want to all attack or all retreat; doing part way will

fail

◦ Might be traitorous generals with complex motives

◦ (split their vote, if 5R 4A, tell the 5A and 4R).

◦ Unreliable messengers

• Roundabout way to say, can we write code that gives

correct results even if we have hardware that we can’t

23



trust to give the right answers

24



N-version software

• Implement same code many different ways

• Vote on result.

• Need a tight spec to make sure results will all match.

25



Algorithm Based

• Parity checks, CRC

• Spread out work so that if one gives wrong result it can

be checked. Overlap work.

• Add some extra values to calculation that can be

checked, can tell if something went wrong

26



Data Structure Based

• Extra state in data structure or checksum so can tell if

it gets corrupted.

27



Control Flow Checking

• Knows where code should be allowed to jump to

• If you jump somewhere impossible, checker stops things

• Hardware these days can help with this

• For example: compiler knows all callers of function.

Return from function should always return back to one

of these locations.

28



Application Level Checkpointing

• Checkpoint your program state periodically.

• If a failure takes down a program or hardware node, you

can restore to last checkpoint rather than starting from

scratch.

• Two kinds

◦ manual — (you save out your state manually and have

to write code to restart from arbitrary point)

◦ Automatic – kernel stores everything possible about

your state and can restart a program from a snapshot.

29



Checkpointing Difficulty

• Must save all program state, network connections, RAM

contents, disk state, open files, etc.

• Hard to do (I’ve written one). Some support in Linux

kernel, need lots of patches as some syscalls are write-

only.

30



Checkpointing Overhead

• Checkpoints have high overhead. Have to stop while

taking them? Write GB to disk?

• Multilevel checkpoint – big checkpoint occasionally and

smaller subcheckpoints

31



Crash Only Software

• Crash-only software – crashing and restarting can take

less time than clean reboot.

• So why write code to cleanly shutdown? Instead write

your code so it can handle crashes cleanly. That way

your cleanup code is tested every exit, rather than rarely

on a crash.

32



Approximate Computing

• Approximate Computing – some algorithms don’t

necessarily need the “right” value

• Video rendering, voice recognition, web search, robotics,

GPS, image processing

33



BOINC

• Someone asked how distributed computing worked for

things like Folding at Home

• Use Berkeley Open Infrastructure for Network

Computing

• Sort of like grid computing

• As of 2020 worldwide added up to 41 PFLOPS (would

be #5 on top500)

• Researchers upload binaries and datasets, the servers

then distribute them to volunteers by client they run

34



• Server is just really old-fashioned PHP/MySQL LAMP

server

• Server also validates results, also hands out workloads

multiple times to be sure the answers match

• My friend runs the Machine Learning Comprehension at

home project.

35


