
ECE 574 – Cluster Computing
Lecture 17

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

23 March 2023

https://web.eece.maine.edu/~vweaver

Announcements

• HW#8 (CUDA) will be posted.

• Project topics were due.

• News: NVIDIA GTC, new H100 NVL GPU for large

language models. Two H100 PCIe cards stuck together,

spans 4 slots, 700W. HBM3 memory. 94GB/die.

1

Raspberry Pi Cluster Notes

• A lot of sysadmin work maintaining a cluster

• OOM. If cause crash let me know

Old Pi2s, so even though cluster has 24GB of RAM,

each node only 1GB (256MB/core)

• Issue with scp -r, a lot of this is because I have old pis

need to update, but time consuming and things will

break

also probably need larger SD cards

• Problem is “scp” is deprecated for reasons and so defaults

2

to the “sftp” protocol instead, but older versions of sftp

don’t understand the concept of home directories. Fix is

to use scp -O -r where -O means use old scp instead

3

HW#7 Notes

• Extended until Monday

• Try not to break cluster over the weekend

• Provided a solution. Don’t usually like doing that

• Working on grading HW#6, debugging other people’s

code is extremely time consuming

• Debugging skills. How would you debug a program like

this?

◦ Write in small chunks, testing along way. Easier than

throwing together big mass of code and then giving up

4

when it doesn’t work

◦ That’s why I tried to have you do things like

◦ Test on 1-rank and be sure that works before moving

onto more ranks

◦ Dump intermediate output, be sure sobelx works before

worrying about sobely or combine/

◦ Print your ranges and make sure they make sense

◦ ”The output looks the same”, but it isn’t. Try flipping

between them. There might be binary diff tools to

actually show you what’s different, though that’s more

difficult if it’s an off-by-one error.

5

◦ If it crashes, usually it means you’re going off the edge

of a buffer, double and triple check the values that are

going into array accesses (or even worse, pointers)

◦ People annoyed the tests I give don’t work, but they’re

unit tests, known good inputs/outputs for verifying

code works

◦ Some code is tricky, like finding edge conditions on

inputs. This is an important thing that happens often

in programming. Coding isn’t always cut+paste of ask

an AI, someone has to write the original tricky code.

6

CUDA – installing

• On Linux need to install the proprietary NVIDIA drivers

• Have to specify nonfree on Debian.

• Debates over the years whether NVIDIA can have

proprietary drivers; no one sued yet. (Depends on

whether they are a ”derived work” or not. Linus refuses

to weigh in)

• Sometimes have issues where drivers won’t install

(currently having that issue on some of my machines)

7

Question: how does Hardware Raytrace
work

• NVIDIA: Optix Library

• You describe how rays behave

• Details are a bit hard to get

8

NVIDIA GPUs

• Quadro (Workstation) vs Geforce (Gaming) (note from

2023, they renamed these)

◦ Quadro generally more RAM. higher Bus width

◦ Fancier Drivers

◦ Optimized for CAD type stuff and compute, rather

than games

◦ Higher reliability

◦ Quadro better support for double-precision floats

◦ More compute cores

9

◦ Power limits

10

NVIDIA Generations

• Kepler

• Maxwell

• Pascal

• Turing (consumer)/Volta (pro)

• Ampere

• Lovelace/Hopper

11

GPU hardware in my Lab

• Can use these for projects. I mostly get these for power

measurement tests.

• NVIDIA RTX A2000 in Skylake

◦ 6GB GDDR6, 192-bit, 288 GB/s

◦ Ampere, PCIe4x16

◦ 3328 CUDA cores, 104 tensor cores, 26 RT cores

◦ 8 TFLOPS single-precision, RT 15.6 TFLOPS, Tensor

64 TFLOPS

◦ 70W, DirectX 12.07, Vulkan 1.2

12

• NVIDIA Quadro P2000 in Skylake (old)

◦ 5GB GDDR5, 160-bit, 140 GB/s

◦ 1024 cores, Pascal, PCIe3x16

◦ 75W, DirectX 12.0, Vulkan 1.0

• NVIDIA Quadro P400 in Haswell-EP

◦ 2GB GDDR5, 64-bit, up to 32 GB/s

◦ 256 cores, Pascal architecture

◦ 30W, OpenGL 4.5, DirectX 12.0

◦ Low-power for server, as runs in 1U rack

• NVIDIA Quadro K2200 in Quadro

◦ So old the drivers don’t want to support it anymore

13

◦ 4GB GDDR5, 128-bit 80 GB/s

◦ 640 cores, Maxwell architecture

◦ 68W, OpenGL 4.5, DirectX 11.2

14

Programming a GPGPU (CUDA/OpenCL)

• Create a “kernel” which is a small GPU program that

runs on a single thread. This will be run on many cores

at a time.

• Allocate memory on the GPU and copy input data to it

• Launch the kernel to run many times in parallel. The

threads operate in lockstep, all executing the same

instruction in each thread.

• How is conditional execution handled? a lot like on

ARM. If/then/else. If the particular thread does not

15

meet the condition, it just does nothing until the other

condition finishes executing.

• If more threads are needed the available on the GPU,

may need to break the problem up into smaller batches

of threads.

• Once computing is done, copy results back to the CPU.

16

CPU vs GPU Programming Difference

• The biggest difference: NO LOOPS

• You essentially collapse your loop, and run all the loop

iterations simultaneously.

17

Flow Control, Branches

• Only recently added to GPUs, but at a performance

penalty.

• Often a lot like ARM conditional execution

18

NVIDIA Terminology (CUDA)

• Thread: chunk of code running on GPU.

• Warp: group of thread running at same time in parallel

simultaneously

AMD calls this a “wavefront”

• Block: group of threads that need to run

• Grid: a group of thread blocks that need to finish before

next can be started

19

Terminology (cores)

• Confusing. Nvidia would say GTX285 had 240 stream

processors; what they mean is 30 cores, 8 SIMD units

per core.

20

CUDA Programming

• Since 2006

• Compute Unified Device Architecture

• See the NVIDIA “CUDA C Programming Guide”

• Use nvcc to compile

• .cu files. Note, technically C++ so watch for things like

new

21

CUDA Coding

• version compliance – can check version number. New

versions support more hardware but sometimes drop old

• nvcc – wrapper around gcc. global code compiled into

PTX (parallel thread execution) ISA

• can code in PTX code directly which is sort of like

assembly language. Won’t give out actual assembly

language. Why?

• CUDA C has mix of host and device code. Compiles the

global stuff to PTX, compiles the <<< ... >>> into

22

code that can launch the GPU code

• PTX code is JIT compiled into native by the device

driver

• You can control JIT with environment variables

• Only subset of C/C++ supported in the device code

23

CUDA Programming

• Heterogeneous programming – there is a host executing

a main body of code (a CPU) and it dispatches code to

run on a device (a GPU)

• CUDA assumes host and device each have own separate

DRAM memory

(newer cards can share address space via VM tricks)

• CUDA C extends C, define C functions ”kernels” that

are executed N times in parallel by N CUDA threads

24

CUDA Programming – Host vs Device

• *host* vs *device*

host code runs on CPU

device code runs on GPU

• Host code compiled by host compiler (gcc), device code

by custom NVidia compiler

25

CUDA Programming – Memory Allocation

• cudaMalloc() to allocate memory and pointers that can

be passed in

cudaMalloc((void **)&dev a,N*sizeof(int));

• cudaFree() at the end

• cudaMemcpy(dev a,a,N*sizeof(int),

cudaMemcpyHostToDevice);

• cudaMemcpy(c,dev c,N*sizeof(int),

cudaMemcpyDeviceToHost);

26

CUDA Programming – Pointers

• Note: result of a cudaMalloc() might look like a pointer,

but it’s not

• You can’t dereference memory allocated with

cudaMalloc() on the CPU, the memory area is completely

separate

• There is work on newer GPUs allowing unified CPU/GPU

memory but we’re going to assume that’s not available

27

CUDA Hardware

• GPU is array of Streaming Multiprocessors (SMs)

• Program partitioned into blocks of threads. Blocks

execute independently from each other.

• Manages/Schedules/Executes threads in groups of 32

parallel threads (warps) (weaving terminology) (no

relation)

• Threads have own PC, registers, etc, and can execute

independently

• When SM given thread block, partitions to warps and

28

each warp gets scheduled

• One common instruction at a time. If diverge in control

flow, each way executed and thread not taking that path

just waits.

• Full context stored with each warp; if warp is not ready

(waiting for memory) then it may be stopped and another

warp that’s ready can be run

29

CUDA Threads

• kernel defined using global declaration. When

called use <<<...>>> to specify number of threads

• each thread that is called is assigned a unique ThreadID

Use threadIdx to find what thread you are and act

accordingly

30

CUDA Programming – Kernels

• global parameters to function – means pass to

CUDA compiler

• call global function like this add<<<1,1>>>(args)

where first inside brackets is number of blocks, second

is threads per block

• Can get block number with blockIdx.x and thread index

with threadIdx.x

• Can have 65536 blocks and 512 threads (At least in

2010)

31

• Why threads vs blocks?

Shared memory, block specific

shared to specify

• syncthreads() is a barrier to make sure all threads

finish before continuing

32

CUDA Debugging

• Can download special cuda-gdb from NVIDIA

• Plain printf debugging doesn’t really work

33

CUDA Example
__global__ void VecAdd(float *A, float *B, float *C) {

int i = threadIdx.x;

if (i<N) // don’t execute out of bounds

C[i]=A[i]+B[i];

}

int main(int argc , char **argv) {

....

/* Invoke N threads */

VecAdd <<<1,N>>>(A,B,C);

}

34

