
ECE 574 – Cluster Computing
Lecture 20

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

4 April 2023

https://web.eece.maine.edu/~vweaver

Announcements

• Don’t forget HW#8

1

HW#8 Notes

• Remember that CUDA is a little like MPI, in that the

GPU is a separate machine without a shared memory

space

• You have to make sure you are passing by reference, you

can’t pass a CPU pointer as an argument and expect it

to work

• It is hard to debug. If getting weird results, try backing

things out step at a time until it does what you expect

and then adding things back on

2

Non-CUDA Acceleration Libraries

3

OpenACC

• Sort of like OpenMP but can offload to GPU as well as

CPUs

• Cray, CAPS, Nvidia and PGI

• Designed for use in heterogeneous CPU/GPU systems

• Like OpenMP, annotate existing code

4

OpenACC – Using it

• Need a compiler that supports it

• GCC only got support for OpenACC 2.5 in version 9.1

• If you want to run on gpu you need nvc (NOTE: not

the same as nvcc) which is nvidia’s version of the PGI

compiler

• Note, you don’t need to allocate memory on device and

copy back/forth, it does it for you

• include openacc.h

• Pragmas, like with OpenMP

5

◦ to define/copy data: #pragma acc data

◦ to tell the compiler to parallelize a region. It might be

conservative, so you might have to give it extra info to

get better performance #pragma acc kernels

◦ to parallelize a loop (note, you need to make sure it is

safe to do this): #pragma acc parallel loop

• Various runtime functions as well, e.g. acc_get_num_devices()

• Compile code with -fopenacc

• It’s hard to tell even when code compiles/runs if it’s

actually being accelerated

6

Other Low-Level Accelerator Libraries

• For graphics, OpenGL and DirectX/3D too abstract, not

match all hardware

• Issues like efficient use of DMA, command buffers, etc.

• Try to get CPU and GPU working better together

• Defunct OpenGL-style Graphics Libraries:

◦ Glide (3dfx)

◦ Mantle (AMD)

• Other low-level GPU libraries: GNM (playstation 4),

NVN (Nvidia/Switch)

7

Apple Metal

• Metal – from Apple, their replacement for OpenCL.

C++ like, sort of a mix of OpenCL and OpenGL

8

Others

• WebGPU – GL/GPGPU Javascript (currently under

development)

• WebCL – OpenCL Javascript bindings

• OpenVG – 2d vector graphics accel

• Lots more on wikipedia (?)

9

Vulkan

• More modern OpenGL

• Supposedly OpenCL merging into Vulcan?

• based on AMD Mantle

• Is a bit beyond this class

10

OpenCL – Open Computing Language

• The main competitor to CUDA?

• CUDA is only for NVIDIA GPUs

• What if you have Intel or AMD (ATI) chip? Or ARM

MALI? or Raspberry Pi Vcore IV?

• OpenCL is sort of like CUDA, but cross-platform

• Not only for GPUs, but can target regular CPU, DSP,

FPGAs, etc

• Vendor provides a driver

• Khronos (the OpenGL + Vulkan people?) also run

11

OpenCL

• Windows, OSX, Linux

12

OpenCL History

• Started by Apple, 2008

• Donated to Khronos

• Apple has abandoned it

• AMD chose it instead of Metal

• OpenCL 1.0 (2009)

• OpenCL 1.1 (2010)

• OpenCL 1.2 (2011)

• OpenCL 2.0 (2013)

◦ Shared virtual memory

13

• OpenCL 2.1 (2015)

◦ Can use C++ in kernels

• OpenCL 2.2 (2017)

◦ Support for SPIR-V intermediate language

• OpenCL 3.0 (2020)

◦ OpenCL 1.2 is baseline

◦ All 2.x and 3.x features optional?

◦ Changed up the C++ and code generation, based on

LLVM

• Grumblings of somehow merging functionality with

Vulkan?

14

Installing OpenCL (Linux)

• You install opencl

• You also need to install an ICD (installable client driver)

for the device you want to run on

• You can have multiple ICDs installed

• NVIDIA is actually easiest, especially if you already have

CUDA going

• AMD as of 2022 the open-source drivers don’t support

OpenCL

You can install OpenCL from the proprietary drivers but

15

that might not work well

• Intel GPU has project could Beignet

• There are also CPU/software, emulated, and other ICDs

16

OpenCL program Flow

Similar to CUDA but *much* more verbose

• Allocate host buffer

• Get platform/device

• Set up platform

• Choose device

• Create context

• Create command queue

• Create memory buffer on device

• Copy buffer to device

17

• Create a program kernel

• Build kernel

• Set arguments

• Execute

• Read back results

• clean up and wait to finish

• Release

18

Getting things Going

• Much more of a pain than CUDA, lots of manual and

boilerplate code

• I’ll provide it for you

19

First – Platforms
cl_int clGetPlatformIDs(cl_uint num_entries ,

cl_platform_id *platforms ,

cl_uint *num_platforms);

• Query number of platforms

• You can call with num entries 0, platforms NULL to get

number of platforms

• Then malloc() space to get all the info

• You can also hard-code a number to read, but that’s not

as flexible

20

Iterating platform info
for(i=0;i<num_platforms;i++) {

err = clGetPlatformInfo(platform[i], CL_PLATFORM_NAME ,

sizeof(platform_name[i]), platform_name[i],

&returned_size);

if (err != CL_SUCCESS) {

printf("Error: Failed to get platform info! %s\n",

cl_getErrorString(err));

return EXIT_FAILURE;

}

• Can iterate and get NAME, VENDOR, VERSION

• Need to allocate space for strings

21

Error printing aside

• OpenCL doesn’t have equivalent of strerror()

• You just get a number on error

• You can implement your own (I provide one)

22

Initializing Devices
cl_int clGetDeviceIDs(

cl_platform_id platform ,

cl_device_type device_type ,

cl_uint num_entries ,

cl_device_id* devices ,

cl_uint* num_devices);

• Now when you have the platform, you can get the devices

for that platform

• Why multiple? Can you have multiple GPUs on same

platform?

Can you have a CPU that also has integrated GPU?

• Device type: CL DEVICE TYPE ALL,

23

CL DEVICE TYPE GPU, CL DEVICE TYPE CPU,

etc

24

Iterating Devices
cl_int clGetDeviceInfo(

cl_device_info param_name ,

size_t param_value_size ,

void *param_value ,

size_t *param_value_size_ret)

• You can also iterate devices to get info too

25

Initializing the Context
cl_context clCreateContext(const cl_context_properties *properties ,

cl_uint num_devices ,

const cl_device_id *devices ,

void (CL_CALLBACK *pfn_notify) const char *errinfo ,

const void *private_info , size_t cb,

void *user_data ,

cl_int *errcode_ret)

• A context manages the host/device interaction

• We need one for each OpenCL kernel we call

• Callback function can be used to return errors from the

kernel, can set to 0/NULL if don’t care

26

Creating the Command Queue
cl_command_queue clCreateCommandQueueWithProperties(

cl_context context ,

cl_device_id device ,

const cl_queue_properties *properties ,

cl_int *errcode_ret);

• Creates command queue

27

Note on Kernel

• Based on C

• pointers annotated with memory level

• some things not allowed: recursion, function pointers

• regular data types, some others like vectors

• With OpenCL 2.x more similar to C++

• Plan is to merge it with Vulkan

28

Loading Kernel – From Source

• Just-in-time compilation

• How can you do that? Just include the kernel as plain

text and it gets compiled right when you run the program

• Upside: your executable can be moved to other machines

with different backends and it will just work

• Downsides: needs to compile the code every time you

run it

29

Loading Kernel – Binary

• Can get binary-only kernels (why?)

◦ Proprietary?

◦ also, not have to build each time

• clCreateProgramWithBinary()

30

Including the Kernel

• Just have it in a string in your file

• Have it on disk but do some #include magic

• Have it in a file on disk and load it into a string

• Intermediate representation?

31

Notes on kernel (OpenCL C) Programming

• Own built in data types: basic app vector app vector

char cl char charn cl charn etc

why? portable. sadly sizes not same on windows/linux

• n element 2,3,4,8,16 sizes

• “half” type for 16-bit fp

• address space qualifiers

◦ global

◦ local

◦ constant

32

◦ private

33

Example
const char *saxpy_kernel = "\n"

"__kernel\n"

"void saxpy (\n"

" const unsigned int n,\n"

" const float a,\n"

" __global float *x,\n"

" __global float *y) {\n"

"\n"

" int i = get_global_id (0);\n"

"\n"

" if (i < n) {\n"

" y[i] = a * x[i] + y[i];\n"

" }\n"

"}\n"

"\n";

34

Loading the kernel from source code
cl_program clCreateProgramWithSource(cl_context context ,

cl_uint count ,

const char **strings ,

const size_t *lengths ,

cl_int *errcode_ret)

35

Building the Kernel
cl_int clBuildProgram(cl_program program ,

cl_uint num_devices ,

const cl_device_id *device_list ,

const char *options ,

void (CL_CALLBACK *pfn_notify)

(cl_program program , void *user_data),

void *user_data)

• Essentially just launch a compiler on the kernel source

code

• Can get build info (the build log)

• Can pass command line arguments

• Can release kernel when done (TODO)

36

Create the Kernel
cl_kernel clCreateKernel (cl_program program ,

const char *kernel_name ,

cl_int *errcode_ret)

• Note the function name is the same as specified in kernel

37

Memory Hierarchy

• global – shared by all, but high latency

• constant – read only by all but cpu, smaller, a bit faster

• local – shared by a group of cores on device

• register – per element

38

Allocating Memory
cl_mem clCreateBuffer (cl_context context ,

cl_mem_flags flags ,

size_t size ,

void *host_ptr ,

cl_int *errcode_ret)

• Parameters like CL_MEM_READ_WRITE, CL_MEM_READ_ONLY, etc.

39

Copying Memory Host to Device
cl_int clEnqueueWriteBuffer(cl_command_queue command_queue ,

cl_mem buffer ,

cl_bool blocking_write ,

size_t offset ,

size_t size ,

const void *ptr ,

cl_uint num_events_in_wait_list ,

const cl_event *event_wait_list ,

cl_event *event)

/* Example */

err = clEnqueueWriteBuffer(commands , dev_x , CL_TRUE , 0,

sizeof(float) * N, x, 0, NULL , NULL);

•
• OpenCL 2.0 allows sharing virtual address space so you

might not have to copy?

40

Setting up arguments
cl_int clSetKernelArg(

cl_kernel kernel ,

cl_uint arg_index ,

size_t arg_size ,

const void* arg_value);

err |= clSetKernelArg(kernel_saxpy ,

0, sizeof(unsigned int), &N);

• Set arguments to pass to kernel

41

Getting size of workgroup kernel
cl_int clGetKernelWorkGroupInfo(cl_kernel kernel ,

cl_device_id device ,

cl_kernel_work_group_info param_name ,

size_t param_value_size ,

void *param_value ,

size_t *param_value_size_ret)

• Determine how wide we can be, sort of like the max

thread count in CUDA

• Can set up three-dimensional thread type things like

CUDA but easier not to if we fit

42

Iterations in the kernel

• A lot like CUDA, where split into 1D, 2D, or 3D grid.

• get global id();

• get local id();

• get num groups();

• get group size()

• get group id()

43

Launching the kernel
cl_int clEnqueueNDRangeKernel (

cl_command_queue command_queue ,

cl_kernel kernel ,

cl_uint work_dim ,

const size_t *global_work_offset ,

const size_t *global_work_size ,

const size_t *local_work_size ,

cl_uint num_events_in_wait_list ,

const cl_event *event_wait_list ,

cl_event *event)

• Launch the kernel

44

Command Queue

• FIFO or out of order (always issued in order)

45

Querying Kernel

46

Synchronization

• when needed?

• single device, out of order queue

• multiple devices?

• coarse grained

◦ clFlush/clFinish

• fine grained

◦ event based

• memory fences?

• CL event, for communicating

47

Freeing stuff at end

• Good idea

48

OpenCL – compiling

gcc -I include -L /lib -lOpenCL

saxpyc -o saxxpy

49

Demo, sample code

• Try out clinfo program

• Run saxpy with 0, 1, and 2 devices

• Note slowdown as it JITs

50

SPIR – standard portable Intermediate
Representation

51

