
ECE 574 – Cluster Computing
Lecture 4

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

30 January 2025

http://web.eece.maine.edu/~vweaver


Announcements

• Homework #2 will be posted

• Haswell-EP was set up

1



Sever Account Info

• Log in to weaver-lab. Be sure to use port 2131 or it will

try to connect to the wrong machine. (Why?)

• Change your password first thing.

• Behave. No hacking / cracking / spamming / irc-bots

/ bitcoing-mining

Also be responsible with disk usage, as I don’t have disk

quota set up.

• Also the disk isn’t backed up so be careful when deleting

files (using git locally might be a good option to avoid

2



that)

• If you find a security bug, great! Let me know! Don’t

go deleting things or impersonating people or installing

root kits, or other stuff.

3



Speedup / Parallel Efficiency Examples

• Reminder

◦ Speedup = Sp =
Ts
Tp

where p=# of processes (threads)

Ts = execution time of sequential code

Tp = execution time of parallel with p processes

For ideal, Sp = p

◦ Parallel Efficiency

Ep =
Sp
p = Ts

pTp
Ideal linear speedup Ep=1

4



• Examples where serial code takes 120s, p=2

◦ T2 = 150s, Sp =
120
150 = 0.8, Ep =

.8
2 = .4

◦ T2 = 120s, Sp =
120
120 = 1, Ep =

1
2 = .5

◦ T2 = 60s, Sp =
120
60 = 2, Ep =

2
2 = 1

◦ T2 = 30s, Sp =
120
30 = 4, Ep =

4
2 = 2

5



Hardware Performance Counters

• Registers that hold architectural performance counts

• Available on all modern CPUs

• Usually 2-8 of them, often 40-64 bits wide

• Possibly up to 100s of events available

• Have registers you set to enable, start, stop, read value,

select event type

• Interface varies arch to arch, vendor to vendor, and even

chip revisions

• Other useful thing, hardware interrupt can be triggered

6



when counter overflows. Why?

If you read infrequently, could miss overflows and be off

Also useful for sampling.

• Pure user events, how can you make sure only belongs

to your process?

Operating system can save/restore registers on context

switch

7



Are counter results accurate?

• See my various papers

• Short answer is usually, but more obscure might not be

• Intel/AMD also tend to overcount on interrupts

• How would you validate the counters themselves?

Exact assembly language program.

• Also chip companies care, but counter correctness is

not enough to stop a chip from shipping. They might

undocument (or errata) if you report a bug.

8



Linux Version

• perf event open() system call. Really complex, see the

manpage.

• Old days was perfctr, then perfmon which required

patching kernel.

• Slowly looked like was getting merged, but then out

of nowhere Molnar introduced perf event which got in

quickly in 2.6.31 kernel

• Has issues but is mostly good enough these days.

9



perf tool

• perf tool comes with kernel

• Can be used for doing measurement

• Will give a demo next class, but you can do something

like

perf stat ./xhpl

• Might be disabled by default for security reasons, at least

partly it is my fault.

10



PAPI

• Layer of abstraction.

• Want to use counters on all kinds of supercomputers

without having to change for each?

• Also provides self-monitoring, can add “calipers” to your

code to measure things.

11



Profiling

• Records summary information during execution

• Usually Low Overhead

• Implemented via Sampling (execution periodically

interrupted and measures what is happening) or

Measurement (extra code inserted to take readings)

12



Profiling Tools

• Low Overhead – Using hardware counters, such as perf

• Small Overhead – Using static instrumentation, such as

gprof

• Large Overhead – Using dynamic binary instrumentation,

such as valgrind callgrind

• Extreme Overhead – full system simulator

13



Compiler Profiling

• gprof

• gcc -pg

• Adds code to each function to track time spent in each

function.

• Run program, gmon.out created. Run “gprof

executable” on it.

• Adds overhead, not necessarily fine-tuned, only does

time based measurements.

• Pro: available wherever gcc is.

14



DBI Profiling

• Valgrind / callgrind tool

15



Tracing

• When and where events of interest took place

• Shows when/where messages sent/received

• Records information on significant events

• Provides timestamps for events

• Trace files are typically *huge*

• When doing multi-processor or multi-machine tracing,

hard to line up timestamps

16



Using Perf

17



perf tool
$ perf stat ./dgemm_naive 200

Will need 1280000 bytes of memory, Iterating 10 times

Performance counter stats for ’./dgemm_naive 200’:

7239.152263 task-clock (msec) # 0.992 CPUs utilized

116 context-switches # 0.016 K/sec

0 cpu-migrations # 0.000 K/sec

357 page-faults # 0.049 K/sec

6,513,184,942 cycles # 0.900 GHz

<not supported> stalled-cycles-frontend

<not supported> stalled-cycles-backend

2,592,685,475 instructions # 0.40 insns per cycle

91,797,411 branches # 12.681 M/sec

974,817 branch-misses # 1.06% of all branches

7.299463710 seconds time elapsed

18



• Many options. Can select events with -e

• Use perf list to list all available events

• Hundreds of events available on x86, not quite so many

on ARM.

• Understanding the results often requires a certain

knowledge of computer architecture.

19



Perf Profiling

Automatically interrupts program and takes sample every

X instructions.

• perf record

• perf report

• perf annotate

20



Skid

• Beware of “skid” in sampled results

• This is what happens when a complex processor cannot

stop immediately, so the reported instruction might be

off by a few instructions.

• Some processors do not have this problem. Recent Intel

processors have special events that can compensate for

this.

21



Performance Data Analysis

Manual Analysis
• Visualization, Interactive Exploration, Statistical

Analysis

• Examples: TAU, Vampir

Automatic Analysis
• Try to cope with huge amounts of data by automatic

analysis

• Examples: Paradyn, KOJAK, Scalasca, Perf-expert

22



Commodity Cluster Setup – Hardware

...

Compute Nodes

Compile Node
Login/

N
e
tw

o
rk

Storage

• Simple cluster like the pi-cluster, or older ones I’ve made

• Commodity cluster design is a combo of

ECE331/ECE435 more than anything else

23



• Can be made out of a handful of machines, Ethernet

switch, and one machine with two Ethernet ports

• Could it work with wifi instead of wired Ethernet?

• Why have a head node?

• What kind of network? Ethernet? Inifiniband?

Something fancier?

• Operating system? Do all nodes need a copy of the OS?

Linux? Windows? None?

• Booting: network boot, local disk boot.

• Network topology? Star? Direct-connect? Cube?

Hyper-cube?

24



• Disk: often shared network filesystem. Why? Simple:

NFS (network file system). More advanced cluster

filesystems available.

• Don’t forget power/cooling

25



Commodity Cluster Operating System

• Usually Linux these days

• Imagine the cost of getting licenses for a 10k large server

• Setting up user accounts. Not bad if small cluster, a

pain to keep synched on large

• Doing system maintenance/updates on large cluster.

ssh-agent can help (passwordless login as root).

26



Commodity Cluster Software

• Do you need to run massively parallel MPI workloads?

• Can you just run many, many single-threaded workloads?

• In any case, how do you launch these jobs?

• Users could pick a node at random to ssh into and run

things interactively

This would be a mess, with some nodes overloaded

27



Job Schedulers

• Batch job scheduling

• Different queues (high priority, long running, etc)

• Resource management (make sure don’t over commit,

use too much RAM, etc)

• Notify you when finished?

• Accounting (how much time used per user, who is going

to pay?)

28



Scheduling

• Different Queues Possible – Low priority? Normal? High

priority (paper deadline)? Friends/Family?

• FIFO – first in, first out

• Backfill – bypass the FIFO to try to efficiently use any

remaining space

• Resources – how long can run before being killed, how

many CPUs, how much RAM, how much power? etc.

• Heterogeneous Resources – not all nodes have to be

same. Some more cores, some older processors, some

29



GPUs, etc.

30



Common Job Schedulers

• PBS (Portable Batch System) – OpenPBS/PBSPro/TORQUE

• nbs

• slurm

• moab

• condor

• many others

31



Slurm

• https://slurm.schedmd.com/

• Slurm Workload Manager

Simple Linux Utility for Resource Management

Futurama Joke?

• Developed originally at LLNL

• Over 60% of top 500 use it (when?)

32

https://slurm.schedmd.com/


Setting Up Slurm

• Compiling / installing?

Luckily Debian and such have packages

• Authentication – how does the job scheduler “log in” to

each node to get the code running?

• slurm has something called “munge” that does

authentication

• Setting up config file, a pain to get right

• Auto-starting the various servers at boot

• Fault tolerance

33



sinfo

provides info on the cluster

PARTITION AVAIL TIMELIMIT NODES STATE NODELIST

debug up infinite 1 idle haswell-ep

general* up infinite 1 idle haswell-ep

34



srun

start a job, but interactively

35



sbatch

submit job to job queue

#!/bin/bash

#SBATCH -p general # partition (queue)

#SBATCH -N 1 # number of nodes

#SBATCH -n 8 # number of cores

#SBATCH -t 0-2:00 # time (D-HH:MM)

#SBATCH -o slurm.%N.%j.out # STDOUT

#SBATCH -e slurm.%N.%j.err # STDERR

export OMP_NUM_THREADS=4

./xhpl

Specify in the shell script comments various parameters,

sort of like command line parameters.

36



Notes: sbatch -N 24 - -ntasks-per-node=4 ./time coarse.sh

To run on all 96 cores of pi-cluster

Can set up to e-mail you when done (though only

locally).

37



squeue

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

63 general time_hpl ece574-0 PD 0:00 1 (Resources)

64 general time_hpl ece574-0 PD 0:00 1 (Resources)

65 general time_hpl ece574-0 PD 0:00 1 (Resources)

62 general time_hpl ece574-0 R 0:14 1 haswell-ep

38



scancel

kills job

scancel 65

39



Running Linpack

• HPL solves linear system of equations, Ax=b. LU

factorization.

• Download and install a BLAS. ATLAS? OpenBLAS?

Intel?

Compiler? intel? gcc? gfortran?

• Download and install MPI (we’ll talk about that later).

MPICH? OpenMPI? (these days I use OpenMPI)

• Download HPL. Current version 2.3?

Modify a Makefile (not trivial) make sure links to proper

40



BLAS. make arch=OpenBLAS

• Above step, might need to create a link from hpl in your

home directory to actual location for reasons

• Creates a bin/OpenBLAS with default HPL.dat file

• Run it ./xhpl Or if on cluster ./mpirun -np 4

./xhpl or similar.

• Result won’t be very good. Need to tune HPL.dat

• N is problem size. In general want this to fill RAM. Take

RAM size, squareroot, round down. NxN matrix. Each

N is 8 bytes for double precision.

• NB block size, can be tuned

41



• PxQ, if on cluster can specify machine grid to work on.

Linpack works best with as square as possible.

• Fiddle with all the results until you get the highest.

42



Linpack Results on my Lab Computers

• https://web.eece.maine.edu/~vweaver/group/machines.html

• Selection of Machines

◦ haswell-ep: 436 GFLOPS, 16/32 cores, 80GB,

2.13GFLOP/W

◦ M1 ARM Mac laptop: 154 GFLOPS, 6 GFLOPS/W

◦ power8: 195 GFLOPS, 8/64 cores, 32GB

◦ pi-cluster: 15.4 GFLOPS, 96 cores, 24GB RAM, 0.166

GFLOP/W

◦ pi-4B 2.02 GFLOPS/W

43

https://web.eece.maine.edu/~vweaver/group/machines.html


• First top500 list, June 1993. Top machine 1024 cores,

60 GFLOPS, 131kW

Pi cluster would have been #7

44



Haswell-EP summary

• Theoretical: 16DP FLOP/cycle * 16 cores * 2.6GHz =

666 GFLOPS

• Linpack/OpenBLAS: 436 GFLOPS (65% of peak)

• HPCG: 0.7 GFLOPS (0.1% of peak)

45



Live Demo – Logging in

• Log in

• Run Linpack

• Try out “time”

46



Live Demo – Perf

• perf stat

• perf list

• perf record

• perf report

• perf annotate

47



Live Demo – System Status

• w

• top

• htop

• glances

• btop

48



Live Demo – Slurm

• sinfo

• squeue

• sbatch

• show sinfo on the pi-cluster

49


