ECE 574 — Cluster Computing
Lecture 6

Vince Weaver
https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

11 February 2025

https://web.eece.maine.edu/~vweaver

Announcements

e Lecture delayed by last Thursday's snowstorm
e HW=£3 was posted, deadline extended to Monday

e C coding. Not too horrible, (not as bad as ECE435) but
some array manipulation.

Workload for future Homeworks

e Before we can write parallel code, we need some serial
code as an example

e Matrix multiply is typical, but boring

e \What else can we use that's embarrassingly parallel, but
interesting?

Convolution

® https://en.wikipedia.org/wiki/Kernel_%28image_processing’29

e Specifically 2-D convolution
e Widely used in image processing

e Walk over every pixel in an image, convolving a matrix
over it. The new value is based on some combination of
the surrounding pixels.

e Usually a 3x3 grid, but can be larger

-y 3

https://en.wikipedia.org/wiki/Kernel_%28image_processing%29

Common Convolution Matrices

|

e Blur = [1 ! 1} (need to normalize)
1

e |dentity = [

o O O
o = O
S O O

1 1

e Sharpen = [_01 N _01]

0 —1 0

—2 —1 0
e Emboss = |1 1 1
0 1 2

e Sobel (edge detection) = [(1) 0 0] [

Loading Graphics into a C array

e We'll use libjpeg to do this

e Use to decompress image into an array of RGB pixels

e How JPEG works is a bit beyond this class:
o Lossy compression format Discrete Cosine Transforms
o It is good at compressing pictures
o It is lossy, but deterministic, so we can use it for output

in this class

e We also use libjpeg to convert the output array back to

an image file

-y 5

What does a framebuffer look like?

e Depends on many things

e Bits-per-pixel, 1bpp, 2bpp, 4bpp, 8bpp, 15bpp, 16bpp,
24bpp, 32bpp

e We will be using 24bpp, with RGB each being one byte

e Our image is a 3D array (x,y,color), but that's hard to do
in C (especially when dynamically allocating memory) so
we will just do a 1D array

Aside: modern framebuffers are a luxury

e Might seem tricky to get bytes in right place

e On old Apple Il system, weird interleaved framebuffer,
14 pixels per 2-bytes, 240p resolution, color clash

e Atari 2600 worse, only 20-bit *total* framebuffer, had
to “race the beam” to draw whole screen

e Even more recent, CGA / EGA/ VGA planar for
bandwidth reasons, would have to bank switch In
multiple planes to draw one pixel

e Famous Mode 13h nice linear array, 8bpp (palette)

-y 7

One way to implement the convolution

e [here are many ways you can implement this, some will
be faster than others. The one shown below is definitely
not the fastest.

e Below is *pseudo code*. It won't compile, as you won't

be able to do the triple array access as pictured, you'll

nave to access the values as a 1-D array as discussed in
class.

for(x=1;x<width-1;x++) {
for(y=1;y<height-1;y++) {
for(color=0;color<3;color++) {
sum=0;
sum+=filter [0] [0]*0l1ld[x-1][y-1][color];
sum+=filter [1] [0]l*o0ld[x][y-1][color];
sum+=filter [2] [0]*0ld[x+1] [y-1][color];
sum+=filter [0] [1]1*0ld[x-1][y][color];
sum+=filter [1] [1]*0ld[x] [yl [color];
sum+=filter [2] [1]*o0ld[x+1] [y][color];
sum+=filter [0] [2]*01ld[x-1] [y+1] [color];
sum+=filter [1] [2]*01ld[x] [y+1] [color];
sum+=filter [2] [2]*01ld [x+1] [y+1] [color];

/* Normalize if necessary (not needed for Sobel) x/

/* Saturate if necessary (Make sure stays in O to 255 range) */
(your code here)

/* Set the new value */
new[x] [yl [color]=sum;

C array access

e a[x] [y] [color] should be done as
al (y*xxsize*3)+(x*3)+color]

e You might want to write a helper function that does this
for you.

e Remember in C that array indexes begin at 0, not 1.

e Why do things this way? You can't use malloc() or
calloc() with a[x][y][c] syntax (or you can, but you have
to have pointers to points and one malloc per row, it
gets complex very quickly). Since we don't know the

-y 10

size of the image in advance it's easier to do things with
a 1D array

/Y 11

Sobel Convolution Notes — Saturating Adds

e For Sobel we do not need to normalize the result, but

we do need to saturate
o If the results is greater than 255, set to 255, or if less

than zero, set to zero.
e Otherwise will wrap and give odd results.

/Y 12

Sobel Convolution Notes — Image Border

e \What do we do for pixels on the edge of the image that
don't have surrounding pixels?

e Do you wrap? Assume 07

e For our code we will only convolve on pixels at least 1

oixel from the border, which results in the edge of the

final image being 0 (black)

/Y 13

Sobel Convolution — Combining the Results

e We will find the horizontal edge, (sobel_x), the vertical
edge, (sobel_y) and then combine the two

e To combine, for each element square the two results
then take the square root (and saturate to 0..255)

o finallz][yllc] = \/sobelz[z][y][c]* + sobely[z][y][c]

e Note C has a sqrt () function. May need to link against
math library to use (-1m)

e Also note, you can't use "2 to square things (that's
XORY!) either multiply by itself or use pow ()

-y 14

How to Optimize

e ROW vs Column Major? FORTRAN vs C? Comes down
to using cache in an expected way.

e Loop order? Want to access in cache friendly manner

e Loop unrolling? Avoids branch issues, etc.

e SIMD? Definitely a case where we could load all 4
channels and operate on them at once. Possibly multiple.
A bit advanced for this class though.

e Compiler options? Using better compiler? Just use
OpenCV?

-y 15

PAPI Usage Instructions — Setup

e [he code will include papi.h and link against the library
with —1papi
e Initialize with:
PAPI_library_init (PAPI_VER_CURRENT) ;
Check the result to see if it matches PAPI_VER_CURRENT
e All other functions should return PAPI_OK if successful.
e If using pthreads need to do:
PAPI_thread_init(pthread_self);

-y 16

PAPI Usage Instructions — Creating
Eventsets

e Eventsets are just integers
int eventset=PAPI_NULL;
e Gathered results are typically 64-bit integers
long long values[NUM];
Where NUM is the number of events you are measuring
at once.
e Create an eventset:
PAPI_create_eventset (&eventset) ;

-y 17

e Available events can be seen with the papi_avail and
papi_native_avail commands.

e Add an event. You can run multiple times to add
multiple events.
PAPI_add_named_event (eventset,"PAPI_TOT_INS");

-y 18

PAPI Usage Instructions — Instrumenting
the Code

e Before the code of interest do a
PAPI_start(eventset) ;

o Afterward do a
PAPI_stop(eventset,values);
and you can print the value or save it for later.

e When printing, remember the results are 64 bits.
printf ("Result: %11d",values[0]);

/Y 19

PAPI Usage Instructions — Debugging

e [he functions all return errors, so it's best to check them

e If you don't check for errors, it won't crash, but you
might get strange (usually really high) results

o If you get an error returned, you can use
PAPI_strerror() to look up the meaning

/Y 20

Hints for Debugging

e You don't have to develop on the cluster, but | will test
there
If you run on own machine you'll have to install PAPI
which might only be possible on Linux

e If your final results don't look right, you can first try
dumping the jpeg of sobelx and sobely and getting those
working first

-y 21

Getting Results off the Server

e How can you view the results?

e You can scp locally (port-redirection with scp needs
-P2131, note it's a capital P)

Scp -P2131 ece574-00ueaver-1ab. cece . maine. edu:output. jpg -

e If you're running X11 graphics on your machine, you can
ssh into the server with -Y option to forward a graphics
viewer like geeqie

e Some GUI scp/sftp clients will let you just double click
on images and it will pop them up

-y 22

More Computer Arch Review

23

Multicore Systems

e Moore's Law can't make systems faster, so the extra
transistors are used for more cores

e Single Package: CMP (Chip-multiprocessor) or SMP
(Symmetric-multiprocessor)

e Multi-package: Multiple CMP packages in system.

e [hese are called “shared memory” systems, one memory
all cores write to, all cores can see reads/writes by all

-y 24

CMP Diagram

CPU CPU CPU
0 1 N
1$/D$ I1$/D$| *° |I1$/D$

_—

Main Memory

Cache Coherency

e How do you handle data being worked on by multiple
processors, each with own cache of main memory?

e Cache coherency protocols.
e Many and varied. MESI is a common one

e Directory vs Snoopy

-y 26

MESI (Modified, Exclusive, Shared, Invalid)

e If just reading, all cores are fine (memory is same) so
can live in shared state

e Writing is the problem. Before writing, need to request
“exclusive” state, which will invalidate the copies on all
other cores

e Once exclusive, can write which leads to “modified”

e Once write back to memory, can return to “shared” state

e This is all done magically in hardware so In theory
software doesn't need to worry about it

-y 27

Barriers and Ordering

e On modern out-of-order execution, memory accesses can
happen out-of-order https://arangodb.com/2021/
02/cpp—memory-model-migrating-from-x86-to-arm/

e Sequential consistency — all happen in order
e Strong consistency — stores

e Weak consistency — can be arbitrarily reordered, only
barriers protect you

-y 28

https://arangodb.com/2021/02/cpp-memory-model-migrating-from-x86-to-arm/
https://arangodb.com/2021/02/cpp-memory-model-migrating-from-x86-to-arm/

e A memory barrier instruction makes sure all previous
loads/stores finish before moving on

e Most important for things like locks, as well as memory-
mapped |/0O

-y 29

Ordering Example

Corel: Core2:
y1=0 x1l=y1l
y2=0 X2=y2
y1=3
y2=4

What values of x1 and x2 can you get?

Strong:
x1=0,x2=0
x1=3,x2=0
x1=3,x2=4
Weak:
x1=0,x2=4

30

Hardware Multi-Threading

e Idea Is to re-use a pipeline to execute multiple threads
at once, *without* fully replicating the entire CPU (so
less than multicore)

e You will have to replicate some things (program counter
for each, etc)

e Usually they appear to the CPU as full separate
processors even though they are not.

e Various ways to do this:

-y 31

o Fine-grained — rotate threads every cycle

o Coarse-grained — rotate threads only if long latency
event happens (cache miss)

o Simultaneous — issue from any combination of threads,
to maximize use of pipeline (have to be superscalar)

e Why do this? Often on superscalar running only one
thread will leave parts idle, try to make use of these.

e Bad side effects?
Can actually slow down code (especially if both threads

-y 3

trying to use same functional units, also if both using
memory heavily as cache is often shared)

e Sometimes see it talked about as SMT (Simultaneous

Multithreading), Intel Hyperthreading is more or less the
same thing

e Modern security issues, leak info between threads

33

PC

Ins Queue

N\

SMT Diagram

Ins Queue Ins Queue

]]
N/

34

Haswell EP Setup

PCle
* T
CPUO LLCO LLC7 CPU7
CPU1 . LLC1 LLC6 . CPU6
CPU2 . LLC2 LLC5 . CPU5
CPU3 LLC3 LLC4 - CPU4
Home Agent
Mem Controller
DIMMO
DIMM1
DIMM2

DIMM3

35

Non-Uniform Memory Access (NUMA)

e Random Access Memory — arbitrary memory accesses
take same amount of time

e Is that true anymore/

e NUMA: some accesses will have to cross to other
processors, causing extra delay

e How can you optimize this?

/Y 36

Traditional NUMA Layout

_—

CPU CPU CPU
0 1 N
I$/D$| |I1$/D$ I$/D$

Main Memory

_—

CPU |CPU CPU
0 1 N
I$/D$| |I1$/D$ I$/D$

Main Memory

37

Types of Clusters

e Shared-memory
o many CPUs, but one shared memory address space.
o Usually one copy of operating system.
o When write to memory, all CPUs can see it.
e Distributed
o Many systems spread across network
o Each has own memory
o For other CPUs to see data have to send message
across network.

/Y 38

Types of Clusters / Programming

e We'll find shared memory is easier to program
Biggest ever? 8k SGI machines?

e Larger systems forced to use message-passing

39

