
ECE 574 – Cluster Computing
Lecture 8

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

20 February 2025



Announcements

• Homework #4 (pthreads) will be posted

1



POSIX Threads (1995)

• Various interfaces:

1. Thread management: Routines for manipulating

threads – creating, detaching, joining, etc. Also for

setting thread attributes.

2. Mutexes: (mutual exclusion) – Routines for creating

mutex locks.

3. Condition variables – allow having threads wait on a

lock

4. Synchronization: lock and barrier management

2



POSIX Threads (pthreads)

• A C interface. There are wrappers for Fortran.

• Over 100 functions, all starting with pthread

• Involve “opaque” data structures that are passed around.

• Include pthread.h header

• Include -pthread in linker command to compiler

3



Pthread Programming

Useful links:

• https://hpc-tutorials.llnl.gov/posix/

• http://www.cs.cf.ac.uk/Dave/C/node31.html

4



Creating Threads

• Your initial process, as per normal, only includes one

thread

• pthread create() creates a new thread

• You can call it anywhere, as many times as you want

5



pthread create()

• pthread create (thread,attr,start routine,arg)

◦ pointer to a thread object (pthread t) which is opaque

◦ an attr object (which can be NULL)

◦ a start routine which is a C function called when it

starts

◦ an arg argument to pass to the routine.

• Only can pass one argument. How can you pass more?

pointer to a structure.

• With attributes you can set things like scheduling policies

6



Terminating Threads

Ways to terminate threads:

• pthread exit()

• Return normally from its starting routine

• another thread uses pthread cancel() on it

• The entire process is terminated (by ending, or calling

exit(), exit group(), etc)

7



Waiting for Thread Completion

• pthread join() lets a thread block until another one

finishes

• The main thread can join all the children and wait until

they are done before continuing.

• Argument to a join is a specific thread to wait on

(so if waiting on four, have to have four calls to

pthread join()

8



Returning Values from a Thread

• Put the result in the arg struct passed in at start

• Use the second parameter to pthread join() which is

a pointer to a void pointer (that gets tricky in C). This

is returned by return from thread, and/or the argument

to pthread exit()

◦ You can cast it to an int to return a single value

◦ You can malloc() a struct and return a pointer to that

◦ NOTE: you can’t return a pointer to a local struct in

the thread, as the stack will be destroyed on exit

9



Stack Management

• Manage your own stack? Can get and set size.

• Be careful allocating too much on stack.

Will you run out of space? OS has things like over-

commit that make this less likely

• Too little stack can be issue if lots of local vars

10



Binding threads to Cores

• Can you pick which core a thread runs on?

• Usually you can trust OS to do an OK job

• pthread setaffinity np() added recently

• Based on Linux sched setaffinity() routine.

• Can also do it via command line (taskset is one way)

11



Mutexes

• Type of lock, only one thread can own it at a time.

• Can be used to avoid race conditions.

12



Condition Variables

• A way to avoid spinning on a mutex

• Threads can queue up waiting for lock, then be restarted

once lock is freed

13



Example code

Example code is posted on course website.

14



Simple Pthread Example

See pthread simple.c

• Hard codes 10 threads

• Do they run in any specific order?

15



Simple Init Example

See pthread init.c.

• Initializes 256MB of data. Number of threads from

command line.

Is this the most efficient way to init memory?

• Why do we have the sleep call? Note: you’d never want

to write a real program using a sleep like that.

• Why errors if run on odd number?

Be sure when splitting up problem handle remainders.

16



Simple Join Example

See pthread join.c

• Can use join to make the master thread wait for the

others to finish.

• Second argument is return value, so can find out what

thread returned when finished (or error)

• Can only join “joinable” threads (PTHREAD CREATE JOINABLE).

By default all threads start out joinable

17



Return Value Example

See pthread return.c

• You can return a value via pthread join()

18



Stack Example

See pthread stack.c

How to see how much stack is available, and how to

change it if not enough.

19



Mutex Example

See pthread mutex.c for code w/o mutex (run with a

num greater than 1)

Then see pthread mutex2.c for core w mutex

Creates a “thread pool” and the threads can request

more work when they finish.

20



Creating Mutexes

• Can create mutexes two ways,

◦ Statically, when declared

pthread mutex t our mutex = PTHREAD MUTEX INITIALIZER;

◦ Dynamically with pthread mutex init() which

allows setting mutex object attributes, attr.

• The mutex is initially unlocked.

• Can specify protocol, priority ceiling, and if it’s

shared/private.

21



Mutex Actions

• lock – try to take lock, will block if another thread has

lock

• unlock – release lock, once released another thread

(including any that are waiting) can take lock

• trylock – non-blocking attempt to get lock

22



Volatile Variables

• When accessing shared variables is it ever a problem that

the compiler or CPU might have the value in a register

and not notice memory accesses from other threads?

• In this case should you force memory accesses while

using the C volatile keyword?

• In theory the answer is no. When using pthreads and

using locking the software stack should make sure any

atomic accesses or barriers happen when they should

• You will find a lot of people will debate this though

23



• You may run into problems if you try to open-code locks

or condition variables yourself in plain C

24



Deadlock

When you have more than one lock, it is possible to end

up nesting locks in ways that lockup a program with both

threads getting stuck.

Thread 1 Thread 2
pthread mutex lock(&mutex1); pthread mutex lock(&mutex2);
pthread mutex lock(&mutex2); pthread mutex lock(&mutex1);

25



Condition Variable Example?

See pthread cond.c

• Can have a thread start up sleeping on a lock, and wake

up when signaled by another thread.

26



PAPI Example

See pthread papi.c

• Do a time example, like in homework 4?

• If using pthreads need to do:

PAPI thread init(pthread self);

• Will also need to do a PAPI register thread() in

each thread you start

27



Debugging Threaded Programs

• It can be hard to debug thread and locking issues

• printf can lead to Heisenbugs

• Valgrind can help with locks (Helgrind tool)

• RR deterministic debugger

28



Race Conditions
x=0; // times we’ve run

x=x+1; x=x+1;

ldr r0 ,x ldr r0 ,x

add r0 ,#1 add r0 ,#1

str r0 ,x str r0 ,x

• Shared counter address

• RMW on ARM

• Thread A reads value into reg

• Context switch happens

• Thread B reads value into reg, increments, writes out

• Context switch back to A

29



• increments value, writes out

• What happened?

• What should value be?

30



Critical Sections

• Want mutual exclusion, only one can access structure at

once

1. no two processes can be inside critical section at once

2. no assumption can be made about speed of CPU

3. no process not in critical section may block other

processes

4. no process should wait forever

31



How to avoid

• Disable interrupts. Heavy handed, only works on single-

core machines.

• Locks/mutex/semaphore

32



Mutex

• mutex lock: if unlocked (0), then it sets lock and returns

if locked, returns 1, does not enter.

what do we do if locked? Busy wait? (spinlock) re-

schedule (yield)?

• mutex unlock: sets variable to zero

33



Semaphore

• Up/Down

• Wait in queue

• Blocking

• As lock frees, the job waiting is woken up

34



Can you write your own lock in plain C?
int lock =0;

try_again:

if (lock ==0) {

lock =1; // take lock

....

lock =0; // release lock

} else {

goto try_again;

}

• Problem happens between checking if lock is free and

setting it taken. If another task can also pass the check

before set, things break. need atomic test-and-set or

similar

35



• Another issue is w/o barriers, loads and stores can be

re-arranged and accesses can leak into/out-of critical

section

36



Locking Primitives

• fetch and add (bus lock for multiple cores), xadd (x86)

• test and set (atomically test value and set to 1)

• test and test and set

• compare-and-swap

◦ Atomic swap instruction SWP (ARM before v6,

deprecated)

◦ x86 CMPXCHG

◦ Does both load and store in one instruction!

◦ Why bad? Longer interrupt latency (can’t interrupt

37



atomic op)

◦ Especially bad in multi-core

• load-link/store conditional

◦ Load a value from memory

◦ Later store instruction to same memory address.

◦ Only succeeds if no other stores to that memory

location

◦ in interim.

◦ ldrex/strex (ARMv6 and later)

• Transactional Memory (mostly abandoned)

38



Locking Primitives

• can be shown to be equivalent

• how swap works:

lock is 0 (free). r1=1; swap r1,lock

now r1=0 (was free), lock=1 (in use)

lock is 1 (not-free). r1=1, swap r1,lock

now r1=1 (not-free), lock still==1 (in use)

39



Memory Barriers

• Not a lock, but might be needed when doing locking

• Modern out-of-order processors can execute loads or

stores out-of-order

• What happens a load or store bypasses a lock instruction?

• Processor Memory Ordering Models, not fun

• Technically on BCM2835 we need a memory barrier any

time we switch between I/O blocks (i.e. from serial

40



to GPIO, etc.) according to documentation, otherwise

loads could return out of order

• Special assembly language instructions

41



Deadlock

• Two processes both waiting for the other to finish, get

stuck

• One possibility is a bad combination of locks, program

gets stuck

• P1 takes Lock A. P2 takes Lock B. P1 then tries to take

lock B and P2 tries to take Lock A.

42



Livelock

• Processes change state, but still no forward progress.

• Two people trying to avoid each other in a hall.

• Can be harder to detect

43



Starvation

• Not really a deadlock, but if there’s a minor amount

of unfairness in the locking mechanism one process

might get “starved” (i.e. never get a chance to run)

even though the other processes are properly taking and

freeing the locks.

44



How to avoid Deadlock

• Don’t write buggy code

• Pre-emption (let one of the stuck processes run anyway)

• Rollback (checkpoint occasionally)

• What to do if it happens?

◦ Reboot the system

◦ Kill off stuck processes

45



Homework #4 Preview

• We will be parallelizing the code using pthreads

46



Homework #4 – Coarse Grained

• Before we calculated sobelx and sobely one after the

other

• Could we run both at the same time?

• Start two threads, one for sobelx, one for sobely

• Can we launch direct into combine when one finishes?

No, have to wait for both to finish first

• What is the max parallelism you can get here?

47



Homework #4 – Fine Grained

• Can we get more fine grained?

• Each pixel in sobel is independent

• We can split things up, if we have 16 threads, give each

1/16 of the sobel array to work on

• The hard part ends up being splitting up the work

• Be careful, have to remember to fixup at the end if not

evenly divisible

• Can parallelize combine as well

• Could you start the combine on parts already done while

48



still finishing x and y? Yes, but the complexity of that

might not be worth it in the end.

49



Homework #4 – Dividing up the Work

• This is the hard part, there are a variety of ways to do it

• The way I suggest in this case is splitting up the array

into chunks. So if the image has 1024 rows and you are

running with 8 threads, then start each thread and give

it (1024/8) rows to work with

• Modify your sobel routine to take a start/end row

Have your Y loop run from start to end rather than

0..ysize

• To calculate start for thread t it would be something

50



like:

start=(1024/8)*t; end=start+(1024/8)-1;

• This works for evenly divisible images. If it’s not, the

easiest way is to just set the end of the last chunk to be

the total ysize rather than what you’d calculate.

• Note, with pthreads each thread needs its own copy of

the command line structure. Otherwise since it’s global

state if you re-use it you’ll have a race. The proper

way to do this is use calloc() (see the example code

pthread join.c presented in class)

51


