
ECE 574 – Cluster Computing
Lecture 9

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

25 February 2025

https://web.eece.maine.edu/~vweaver

Announcements

• HW#4 was posted, due Friday

• First midterm coming up, March 6th (next Thursday)

• Will post project info soon

1

Project Notes – Common Topics

• Parallelize some code

◦ Parallelizing something from your research

◦ Parallelizing some other code you find. Calculating Pi

is one possibility (be sure to pick an algorithm that

calculates lots of digits)

◦ Parallelize non-C code. python (difficult), Matlab

(I don’t have it installed, you’ll have to find other

resources). Rust? Go?

• Build an MPI cluster runing Linpack

2

◦ This one is doable but there are issues. It’s mostly

sysadmin/network engineering work. Linpack is a pain,

and MPI is tough

◦ Homogeneous system easiest, install Linux on identical

machines

◦ Heterogeneous possible, maybe bunch of x86 laptops

all running Linux

◦ More hetetogeneous – lots of old machines including

a mix of x86/arm (raspberry pi). This won’t perform

well and probably a lot harder to get going

◦ Hetegogeneous OSes – mix of Linux/OSX/Windows.

3

In theory this is possible but it might be difficult

• Anything GPU related? GPU on Pi? Shader

programming?

• Open ended so plenty of other things. Measuring

performance. Reliability. etc.

4

Homework #4 – Coarse Code

• Just make two threads, one for sobelx, one for sobely

• Join at end before calling combine

• This part of the homework is to make sure you

understand the basics of pthread programming

5

Homework #4 – Fine Code

• This is much harder

• You can do this any way you want, but below is a

suggested way

• If parallelizing for N threads you need to split up the

work N ways

• While it might be tempting to come up with a complex

scheme to have x, y, and combine all going at once, it

might be best to keep it simple (and that might actually

be faster)

6

• Easiest is to modify one of the loops to only run

a subset of the values. For example, the Y loop.

On thread0 run from 0..(ysize/N)-1, on thread1 from

(ysize/N)..((ysize/N)*2)-1, etc

• You can modify the parameter structure so it takes a

start and end value

• Have a loop that starts N threads, and calculates the

start/end values above and puts them into the parameter

struct before creating the thread

• Be sure for the last end value that you handle workloads

not divisible by N

7

• You will need to have N copies of the parameter struct

to use to pass to the N threads. You can’t re-use one, as

it’s global state and you’ll have a race condition. See the

pthread join.c example from last class for example

code of this being done

8

General Homework Notes – Copying Files

• For Linux/OSX easiest way to copy files from haswell-ep
to your local machine is something like:

scp -P2131 ece574-0@weaver-lab.eece.maine.edu:hw03_submit.tar.gz .

• On windows WinSCP is widely used

• There are various GUI SCP options for Linux/OSX too

but I’ve never used them so can’t particularly recommend

any.

9

OpenMP – Open MultiProcessing

A few good references:

• https://hpc-tutorials.llnl.gov/openmp/

• http://bisqwit.iki.fi/story/howto/openmp/

• http://people.math.umass.edu/~johnston/PHI_WG_2014/OpenMPSlides_tamu_sc.pdf

10

https://hpc-tutorials.llnl.gov/openmp/
http://bisqwit.iki.fi/story/howto/openmp/
http://people.math.umass.edu/~johnston/PHI_WG_2014/OpenMPSlides_tamu_sc.pdf

OpenMP

• Goal: parallelize serial code by just adding a few compiler

directives here and there

• No need to totally re-write code like you would with

pthread or MPI

11

OpenMP Background

• Shared memory multi-processing interface

• Main thread with Fork/Join methodology

• C, C++ and FORTRAN

• Industry standard made by lots of companies

• OpenMP 1.0 came out in 1997 (FORTRAN) or 1998

(C), newst version 6.0 (2024)

12

OpenMP Compiler Support

• gcc support “recently” (2008?) donated, CLANG even

newer

• gcc added support in 4.2 (OpenMP 2.5)

4.4 (OpenMP 3.0), 4.7 (OpenMP 3.1), 4.9 (OpenMP

4.0), 5.0 (Offloading)

• gcc-14.0 still reports OpenMP 4.5 as its version but it

supports some 5.0 features

13

OpenMP Interface

• Compiler Directives

• Runtime Library Routines

• Environment Variables

14

Compiler Support

• On gcc, pass -fopenmp

• C: #pragma omp

• FORTRAN: C$OMP or !$OMP

15

Compiler Directives

• Spawning a parallel region

• Dividing blocks of code among threads

• Distributing loop iterations between threads

• Serializing sections of code

• Synchronization of work among threads

16

Library routines

• Need to #include <omp.h>

• Getting and setting the number of threads

• Getting a thread’s ID

• Getting and setting threads features

• Checking if in parallel region

• Checking nested parallelism

• Locking

• Wall clock measurements

17

Environment Variables

• Setting number of threads (OMP NUM THREADS = 4)

• Configuring loop iteration division

• Processor bindings

• Nested Parallelism settings

• Dynamic thread settings

• Stack size

• Wait policy

18

Simple Example

#include <stdio.h>

#include <stdlib.h>

#include <omp.h>

int main (int argc , char **argv) {

int nthreads ,tid;

/* Fork a parallel region , each thread having private copy of tid */

#pragma omp parallel private(tid)

{

tid=omp_get_thread_num ();

printf("\tInside of thread %d\n",tid);

if (tid ==0) {

nthreads=omp_get_num_threads ();

printf("This is the main thread , there are %d threads\n",

nthreads);

}

}

19

/* End of block , waits and joins automatically */

return 0;

}

20

Notes on the example

• PARALLEL directive creates a set of threads and leaves

the original thread the master, with tid 0.

• All threads will execute the code in parallel region

• There’s an implied barrier/join at end of parallel region.

Only the main thread continues after it.

• If any thread terminates in a parallel region, then all

threads will also terminate.

• You can’t goto into a parallel region.

• In C++ special rules on throw/catching

21

parallel directive
#pragma omp parallel [clause ...] newline

if (scalar_expression)

private (list)

shared (list)

default (shared | none)

firstprivate (list)

reduction (operator: list)

copyin (list)

num_threads (integer -expression)

structured_block

• Can you have nested parallel regions? You can but

generally will get just 1 thread in second region

• Dynamic threads support? Default disabled?

22

if

• if – you can do a check if (i==0)

If true parallel threads are created, otherwise serially

• Why do this? Maybe it’s only worth parallelizing if N

greater than 16 due to overhead, can put if (N>16)

then

23

Variable Scope

• When you enter a parallel section, which variables are

thread-local and which ones are globally visible?

• By default: all shared except loop indices

• There are times you may want per-thread data and not

globally visible

• You specify in the parallel block how you want all of the

variables to behave

24

Variable Scope – private

• variables that are private

• The value is undefined at start and discarded at end

• think of it as though in the block for each thread a new

variable of the same name created and all references to

it are replaced by this local version

25

Variable Scope – shared

• variables seen by all threads

• can be written to by all threads

• Value at end is whatever the last thread wrote to it

26

Variable Scope – firstprivate

• just like private

• the private variable inside a parallel section ends up with

the value it had before the parallel section

27

Variable Scope – lastprivate

• the variable after the parallel section gets the value from

the last loop iteration

28

Variable Scope – copyin

• you can declare special “Threadprivate” values that hold

their value across parallel sections.

• Use this to copy the value in from the master thread.

29

Variable Scope – default behavior

• You can set the default for all variables

• you can set to shared or none (more on C)

• none means you have to explicitly share or private each

var (makes it easier to catch bugs but more tedious)

30

Setting number of threads

• Evaluation of the parallel if clause

• Setting of the parallel num threads clause

• Use of the omp set num threads() library function

• Setting of the OMP NUM THREADS environment variable

• Implementation default – usually the number of CPUs

on a node

31

Thread Numbering

• Threads are numbered from 0 (main thread) to N-1

32

How do you actually share work?

• Could you use what we’ve learned to do things manually,

like our pthread code?

• Using locks/critical sections and manual picking of

ranges based on thread ID?

• Wouldn’t it be better if the implementation could do it

for us?

33

Work-sharing Constructs

• Must be inside of a parallel directive

◦ do/for (do is Fortran, for is C)

◦ sections

◦ single – only executed by one thread

◦ workshare – iterates over F90 array (Fortran90 only)

34

For Example

#include <stdio.h>

#include <stdlib.h>

#include <omp.h>

static char *memory;

int main (int argc , char **argv) {

int num_threads =1;

int mem_size =256*1024*1024; /* 256 MB */

int i,tid ,nthreads;

/* Set number of threads from the command line */

if (argc >1) {

num_threads=atoi(argv [1]);

}

/* allocate memory */

memory=malloc(mem_size);

if (memory ==NULL) perror("allocating memory");

35

#pragma omp parallel shared(mem_size ,memory) private(i,tid)

{

tid=omp_get_thread_num ();

if (tid ==0) {

nthreads=omp_get_num_threads ();

printf("Initializing %d MB of memory using %d threads\n",

mem_size /(1024*1024) , nthreads);

}

#pragma omp for schedule(static) nowait

for (i=0; i < mem_size; i++)

memory[i]=0 xa5;

}

printf("Master thread exiting\n");

}

36

For Example Notes

• loop must be simple

◦ Integer expressions (nothing super fancy).

◦ Comparison must be only regular equals or

greater/less.

◦ Iterator must be simple increment/decrement or

add/subtract.

• Loop iterator should be private. Why? What happens if

all threads could update a global iterator?

37

Do/For
#pragma omp for [clause ...] newline

schedule (type [,chunk])

ordered

private (list)

firstprivate (list)

lastprivate (list)

shared (list)

reduction (operator: list)

collapse (n)

nowait

for_loop

38

Scheduling – Static

• By default, splits up into size
numthreads chunks statically.

• schedule (static,n) chunksize n

◦ assignment of iterations to threads decided once

(statically) at start of loop

◦ for example, if chunksize 10, and 100 size problem:

0-9 CPU 0, 10-19 CPU 1, 20-29 CPU2, 30-39 CPU3,

40-49 CPU0.

• But what if some finish faster than others?

39

Scheduling – Dynamic

• Allocates chunks as threads become free. Can have

much higher overhead though.

◦ dynamic – divided into chunks, dynamically assigned

threads as they finish

◦ guided – like dynamic but shrinking blocksize

why do this? When problem first starts lots of big

chunks left. But near end probably not even, could

end up with one thread getting large chunk and rest

none. Better load balancing.

40

Scheduling – Other

• runtime – from OMP SCHEDULE environment variable

• auto – compiler picks for you

41

Other Options for For

• nowait – threads do not wait at end of loop

• ordered – loops must execute in order they would in

serial code

• collapse – nested loops can be collapsed

if “perfectly nested” meaning nested with nothing inside

the nests. Compiler can turn this into one big loop

42

Data Dependencies

Loop-carried dependencies
for(i=0;i <100;i++) {

x=a[i]; /* no dependency (though careful if x is global) */

a[i]=b[i]; /* probably no dependency but on C can alias */

a[i]=a[i+1]; /* depends on next iteration of loop */

}

43

Shift example
for(i=0;i <1000;i++)

a[i]=a[i+1];

Can we parallelize this?

Equivalent, can we parallelize this?
for(i=0;i <1000;i++)

t[i]=a[i+1]

for(i=0;i <1000;i++)

a[i]=t[i]

More overhead, but can be done in parallel

44

Reductions

• Used when a loop is used to combine a large number of

results to one variable

• Common example: vector dot product
for(i=0;i<N;i++) {

dot_product=dot_product +(a[i]*b[i]);

}

• normally this would be bad in parallel, as race on the

dot product value

• with special reduction command the work is split up in

chunks before, but at the end these are automatically

combined for the final result

45

Reduction Example
for (int i=0;i <10;++i) {

x = x op expr

}

• expr is a scalar expression that does not read x

• limited set of operations, +,-,*

• variables in list have to be shared
#pragma omp parallel for reduction (+:sum) schedule(static ,8)

for(i = 0; i < N; i++) {

/* Why does this need to be a reduction?*/

sum = sum + i*a[i];

}

printf("sum=%lld\n",sum);

46

OMP Sections – Another way to make code
parallel

#pragma omp parallel sections

#pragma omp section

// WORK 1

#pragma omp section

// WORK 2

• Will run the two sections in parallel at same time.

• Useful if you have multiple chunks of code that’s not a

loop but still can run at the same time

• You could implement this with for() and a case statement

(gcc does it that way?)

47

