
ECE 574 – Cluster Computing
Lecture 10

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

27 February 2025

Announcements

• HW#5 will be posted, OpenMP

• I sent out HW#3 Grades

• PAPI support for your own computers

It lags if you’re non on a Supercomputer

Working on getting newer Intel chips (Ice/Alder/Raptor

Lake) supported

1

HW#3 – General Comments

• Please put results in the README file and submit using

“make submit”

• Comment your code!

• Don’t ignore compiler warnings!

• You can compare your butterfinger results against the

provided ones. md5sum can be used for that.

• Issues I saw:

◦ You need to saturate to 255 in combine function too

sqrt(255*255+255*255) is greater than 255.

2

If you wrap around in 8-bits your results will be off.

◦ Be sure the borders are 1 to X-1 and 1 to Y-1

◦ You can’t use the modulus operator to saturate

3

HW#3 – Butterfinger Results

Butterfinger was a pet guinea pig from long ago.

Note on benchmark images, most famous for image

processing “Lena”

time ./sobel ./butterfinger.jpg

output_width=320, output_height=320, output_components=3

SOBELX L3 CACHE MISSES: 1554 CYCLES 9436089

SOBELY L3 CACHE MISSES: 0 CYCLES 9362614

COMBINE L3 CACHE MISSES: 3 CYCLES 6574264

real 0m0.048s user 0m0.024s sys 0m0.004s

4

• Why 0 cache misses for SOBELY?

Cache. 320*320*3=307k

IN, SOBEL X, SOBEL Y, COMBINED, so 300k*4 =

1.2MB or so

• Spacestation is 4288*2929*3 = 37MB or so

• Haswell-EP has 20MB of L3 cache

• Reading causes misses to read input in, rest are writing

out so while not necessarily hits, with write allocate

cache do not seem to be accounted for as misses

• Multiple runs the cache misses are lower, probably due

to operating system disk cache

5

HW#3 – Haswell-EP Brief Cache Overview

• Haswell-EP caches

◦ memory – 200+ cycles best case

◦ 20MB of L3, 20MB, 64B/line (30-60 cycles?)

◦ 256kB per-core L2, 64B/line, 8-way (12-cycles)

◦ 32kB per-core L2, 64B/line, 8-way (4 cycles)

• Chunks of fast memory close to CPU

• Multiple levels

• Memory broken up into cacheline sized chunks (64-byte

on HSW-EP)

6

• When access an address, all 64-B brought in even if not

need rest

• When cache full, something is kicked out to make room

(usually oldest)

• Want to take advantage of spatial and temporal locality

• With butterfinger all fits in L3 cache

7

HW#3 – Earth, Straight implementation of
pseudo-code

./sobel ./earth_06_03_2018.jpg

output_width=2048, output_height=2048, output_components=3

SOBELX L3 CACHE MISSES: 318,572 CYCLES 559,078,407

SOBELY L3 CACHE MISSES: 285,851 CYCLES 556,456,869

COMBINE L3 CACHE MISSES: 593,838 CYCLES 335,950,332

real 0m0.759s user 0m0.688s sys 0m0.032s

12MB, fits in cache?

8

HW#3 – Space Station, Straight
implementation of pseudo-code

Some perf results, if curious.

./sobel ./space_station_hires.jpg

output_width=4288, output_height=2929, output_components=3

L3 CACHE MISSES: 1,135,130 CYCLES 1,670,349,917

L3 CACHE MISSES: 1,125,314 CYCLES 1,638,624,347

L3 CACHE MISSES: 1,751,949 CYCLES 967,758,034

real 0m1.741s user 0m1.647s sys 0m0.048s

9

perf report

67.88% sobel sobel [.] generic_convolve

20.27% sobel sobel [.] main

0.74% sobel [unknown] [k] 0xffffffffa1e00a27

0.33% sobel libjpeg.so.62.2.0 [.] 0x0000000000037902

0.27% sobel [unknown] [k] 0xffffffffa1e0015f

0.26% sobel libjpeg.so.62.2.0 [.] 0x0000000000037912

0.24% sobel libjpeg.so.62.2.0 [.] jpeg_fill_bit_buffer

perf annotate (weird that conditional move is at the top)

0.39 | add %r11d,%ebx

2.86 | cmp $0xff,%ebx

3.57 | cmovg %eax,%ebx

| output_image->pixels[(y*output_ima

0.04 | mov (%r12),%eax

0.78 | imul %r14d,%eax

0.05 | add %esi,%eax

10

0.42 | imul 0x8(%r12),%eax

0.06 | mov 0x10(%r12),%rsi

0.69 | add %ecx,%eax

0.18 | test %ebx,%ebx

7.08 | cmovs %edi,%ebx

1.82 | cltq

perf annotate last time

sum += filter[0][2]*(input_image->p

0.61 | movslq %r11d,%r11

0.66 | movzbl (%rcx,%r11,1),%esi

| convert():

| return (y*xsize*depth)+(x*depth)+color;

42.22 | lea (%r9,%rbx,1),%r11d

| generic_convolve():

11

• Conditional move?

• Compiler does wacky things. All mixed up. In-lined the

combine routine.

• 4288*2929=36MB (larger than L3)

• If you compile with -march=haswell you’ll get much

different results, gcc these days can vectorize some stuff

with AVX

12

HW#3 – Loop Order Optimization

• How is an array laid out in memory?

Row-major (C) vs Column-major (Fortran)

• Default with loop x then y, are actually walking columns.

Worst case.

• Switch order of loops, things get a lot better.

time ./sobel_improved ./IMG_1733.JPG

output_width=3888, output_height=2592, output_components=3

SOBELX L3 CACHE MISSES: 21,246 CYCLES 882,000,608

SOBELY L3 CACHE MISSES: 19,556 CYCLES 881,998,207

COMBINE L3 CACHE MISSES: 1,241,446 CYCLES 1,183,759,970

real 0m1.181s user 0m1.112s sys 0m0.052s

13

HW#3 – Loop Unrolling

• Loop unrolling. Unroll the color loop (explicitly do the

three things 0, 1, 2 and put the values in.

• Can have benefits. Change all occurrences of “color” to

be a constant, which can be optimized.

• Remove branches, which can be slow or mispredicted.

• More code for out-of-order processor to work with and

try to do in parallel.

• Downsides: if gets too large: no longer fit in instruction

cache or loop stream detector.

14

HW#3 – Other Optimizations

• Other optimizations, often are things the compiler does

for you with -O2.

• Hoisting (move things out of loop that only need to be

done once)

• Simplification. Lots of things.

• Try another compiler (clang?)

• Take a compiler class.

15

HW#3 – Convert to one single Loop

No need to iterate X and Y and Color, just walk through

output linearly. Really you have three pointers of input

(line above, current line, below).

time ./sobel_improved ./IMG_1733.JPG

output_width=3888, output_height=2592, output_components=3

SOBELX L3 CACHE MISSES: 15,703 CYCLES 411,148,087

SOBELY L3 CACHE MISSES: 15,334 CYCLES 411,284,853

COMBINE L3 CACHE MISSES: 1,245,842 CYCLES 1,186,204,125

real 0m0.924s user 0m0.848s sys 0m0.044s

16

HW#3 – Same for Combine

No need to offset, just start at beginning of x and y and

write to output, doing the combine operation.

time ./sobel_improved ./IMG_1733.JPG output_width=3888, output_height=2592, out$

L3 CACHE MISSES: 16,188 CYCLES 410,983,833

L3 CACHE MISSES: 14,850 CYCLES 411,059,831

L3 CACHE MISSES: 36,652 CYCLES 496,394,104

real 0m0.690s

user 0m0.628s

sys 0m0.040s

17

ISRA= interprocedural scalar replacement of aggregates,

39.71% sobel_improved sobel_improved [.] generic_convolve.isra.0

24.51% sobel_improved sobel_improved [.] main

2.41% sobel_improved [kernel.kallsyms] [k] clear_page_c_e

1.23% sobel_improved libjpeg.so.62.2.0 [.] jpeg_fill_bit_buffer

1.02% sobel_improved libjpeg.so.62.2.0 [.] 0x0000000000039356

0.83% sobel_improved [kernel.kallsyms] [k] page_fault

18

HW#3 – SIMD (SSE/AVX)

• SIMD = Single Instruction, multiple data

One instruction (say add) can add multiple values at

once

• On intel chips SSE, SSE2, etc. Up to AVX/AVX2 on

newer systems

• 256-bit wide registers. So sixteen 16-bit values (can do

integer), Four 64-bit doubles, etc.

19

• Large number of these registers, xmm0 (128bit) ymm0

(256bit) zmm0 (512bit on newer machines)

• One way is to program in assembly language with some

obscure opcodes: an example PMADDWD 16-bit integer

parallel 128-bit multiply and add

• On recent gcc and other compilers there are “intrinsics”

to use in C, for example you can use mm madd epi16()

to do a PMADDWD instruction

20

HW#3 – Initial SIMD try

9 values from the three input pointers (16-bit)

A B C X D E F X G H I X X X X X

The sobel filter values (16-bit)

1 2 3 0 4 5 6 0 7 8 9 0 0 0 0 0

Multiply and add all in parallel

A1+B2 C3+0 D4+E5 F6+0 G7+H8 I9+00 0+0 0+0

Rearrange and then do a "horizontal add"

A1+B2+G7+H8 C3+I9 D4+E5 F6+0

Another Horizontal Add

0 0 A1+B2+G7+H8+C3+I9 D4+E5+F6

Another Horizontal Add

0 0 0 A1+B2+G7+H8+C3+I9+D4+E5+F6

Convert to 16-bit result, saturate, and be done

The 18 ops (9mul/9add) turned into 4 ops

21

Problems

• Math is very fast, handfull of instructions

• Problem is getting memory from 3 pointers with 3-byte

offsets into registers

• This is a “scatter/gather” problem found often with

SIMD (and GPU)

• There are instructions to try to gather the values

together, but not really suited for this

• Once you do it manually performance is actually worse

than regular code

22

• Challenge: if picture not multiple of 16-bytes

23

HW#3 – Improved SIMD – Can we do
better?

With many problems: re-think outside the serial box

Load full 16 bytes of pixel info from the three pointers,

multiply by the 9 values in sobel filter, shifting right by 3

A * RGB RGB RGB RGB RGB RGB R

B * RGB RGB RGB RGB RGB R

C * RGB RGB RGB RGB R

D * RGB RGB RGB RGB RGB RGB R

E * RGB RGB RGB RGB RGB R

F * RGB RGB RGB RGB R

G * RGB RGB RGB RGB RGB RGB R

H * RGB RGB RGB RGB RGB R

+ I * RGB RGB RGB RGB R

===================================

RGB RGB RGB RGB R 13 values of result

Use compare instruction to saturate in parallel

Store out the 13 bytes at once

24

So (18*13) operations reduced to (~20) I think. Still haven’t tried this yet

25

More OpenMP

26

OMP Sections – Another way to make code
parallel

#pragma omp parallel sections

#pragma omp section

// WORK 1

#pragma omp section

// WORK 2

• Will run the two sections in parallel at same time.

• Useful if you have multiple chunks of code that’s not a

loop but still can run at the same time

• You could implement this with for() and a case statement

(gcc does it that way?)

27

Synchronization functions

• Can manually set up locks

• omp init lock()

• omp destroy lock()

• omp set lock()

• omp unset lock()

• omp test lock()

28

OMP Synchronization

• Instead of manually setting locks, can use

synchronization directives and OMP will do the hard

work for you

29

OMP Synchronization – Master
#pragma omp master

• OMP MASTER – only master executes instructions in

this block

30

OMP Synchronization – Critical
#pragma omp critical

• OMP CRITICAL – only one thread is allowed to execute

in this block

• OMP ATOMIC – like critical but for only one instruction,

a memory access faster

31

OMP Synchronization – Barrier

• OMP BARRIER – force all threads to wait until all are

done before continuing

• there’s an implicit barrier at the end of for, section, and

parallel blocks

• It is useful if using nowait in loops

32

OMP Flush directive

• #pragma omp flush(a,b)

• Compiler might cache variables, etc, so this forces a and

b to be up to date across threads

• TODO: lookup better explanation at how this can

happen

33

OMP – Calling Functions

• can call functions

• functions outside of directives can still have OpenMP

directives in them (orphan directives)

34

Nested Parallelism

• If you have nested loops, which should you put the for

directive in front of

• Ideally the one with the most iterations (and usually the

outer one?)

• If you loop has fewer iterations than you have cores then

some threads may go idle

35

Collapsing Loops

• can collapse loops if perfectly nested

• perfectly nested means that all computation happens in

inner-most loop

• omp set nested(2); can enable nesting

• Also collapse(2) in the parameter list

• TODO: read up more on limitations

36

OpenMP Versions

• 5.0

◦ task reduction

◦ not-equals can appear in loop comparisons

• 4.0

◦ support for accelerators (offload to GPU, etc)

◦ SIMD support (specify simd)

◦ better error handling

◦ CPU affinity

◦ task grouping

37

◦ user-defined reductions

◦ sequential consistent atomics

◦ Fortran 2003

• 3.1

• 3.0

◦ tasks

◦ lots of other stuff

38

OpenMP Pros and Cons

• Pros

◦ portable, simple

◦ can gradually add parallelism to code; serial and

parallel statements (at least for loops) are more or

less the same.

• Cons

◦ Can still have race conditions

◦ Runs best on shared-memory systems

◦ Requires compiler support (not a problem?)

39

OpenMP Examples

See the course website for a link to a tarball with all the

examples.

40

Simple

openmp simple.c

◦ just creates a parallel region and prints thread number.

◦ By default, how many threads are set up on the Haswell-

EP machine?

◦ Try with OMP NUM THREADS=4

41

Scope

TODO: private/shared variable example

It’s hard to make a standalone example that works.

42

for

openmp for.c

• Parallelizes the memory init loop.

• Thread number set from command line and the

num threads() directive.

• What happens to performance as you add threads?

• Did some fancier stuff in the verify code

43

static schedule

openmp static schedule.c

• Creates 100 threads with chunksize of 1.

• Threads are assigned loop indices at statically at start of

loop

• In example, thread 0 is fastest and 4 the slowest.

• You can see thread 0 runs through its assignment fast

and then sits around doing nothing while the rest slowly

finish.

44

dynamic schedule

openmp dynamic schedule.c

• Creates 100 threads with chunksize of 1.

• Threads are assigned loop indices dynamically.

• Each thread starts with one, but zero runs all the rest

because it is so fast.

45

Changing Chunksize

openmp dynamic chunk.c

• Creates 100 threads with a prime number chunksize.

• Threads are assigned same amount of time to run.

• Spread mostly evenly but the last set of chunks, only

two threads get assigned while the others have nothing

to do.

• Switch to “guided” and the chunksize decreases over

time and the ending is a bit more balanced.

46

nested for

openmp for nest.c

• Looks at which loop you should add the for in front of

• If it’s a loop w/o many iterations it limits your nesting

47

collapsing for

openmp for collapse.c

• You can collapse loops

• Useful if not many iterations in outer loop

48

critical

openmp critical.c

• Has a parallel loop, but a shared global counter inside.

• What happens without a critical section? (race

condition)

• Put in the critical section get right results.

• But slow!

• No need to manually add mutexes, OpenMP abstracts

that away.

49

section

openmp section.c

• For parallelism when you don’t have a loop

• Have multiple functions that have no dependencies, want

to run at same time?

• No matter how many threads you have, only can run up

to the maximum number of sections at a time.

50

reduction

openmp reduction.c

• What if you calculate something in each loop iteration,

but want to sum them all in the end? Something like a

vector dot product?

• You could put it in a for loop, sum = sum+ i ∗ a[i] but
race condition on shared sum.

• Could put in critical section but that’s slow as we saw.

• Instead can use special reduction directive.

51

simd reduction

openmp simd reduction.c

https://software.intel.com/en-us/articles/enabling-simd-in-program-using-openmp40

• simd directive

• Supported by recent GCC (5.0 and later)

• Tries to map your code into SSE/AVX vector instructions

if available on your processor.

• Our example turns out runs *slower*. Possibly our input

set is not big enough.

• Can look at assembly code to verify it is making SIMD

52

code:

objdump --disassemble-all openmp simd reduction

• Also you can use gcc -S to generate assembly.

look for pmul and xmm registers

53

offload

openmp offload.c

Can in theory offload loops to GPU (or Intel MIC but

support for that dropped in most recent gcc)

https://gcc.gnu.org/wiki/Offloading

• Need separate compiler for component.

• Support really isn’t there yet(?) verify that

54

HW#5 Preview

• Will use OpenMP for sobel

• Coarse version – use OMP Sections to run sobelx and

sobely at same time

• Fine version – use OMP for directive to do fine grained

parallelism

55

Brief Midterm Preview

• Will cover speedup and parallel efficiency

• Strong vs Weak scaling

• Shared vs Distributed systems

• Pthreads, OpenMP (probably not MPI)

• No need to memorize Top500 list

• Be aware of computer architecture review, but no

questions directly on it

• Will not ask you to code things, but will show you code

similar to homework and ask you questions about it

56

