
ECE 574 – Cluster Computing
Lecture 11

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

4 March 2025

https://web.eece.maine.edu/~vweaver

Announcements

• Midterm this Thursday, March 6th, during class

• If you have accessibility concerns please arrange for them

as soon as possible

• Don’t forget HW#5

• The final project info was posted to the course website

• Reminder on Academic Honesty :(

Remember: using AI for assignments not allowed

1

Midterm on 6 March 2025

• Can bring one page (8.5” by 11” one sided) of notes.

Otherwise closed notes. No computers, cell-phones,

Beowulf cluster, etc.

• There is a speedup question which requires some math

Should be able to do it w/o a calculator, but you can

have one if you must.

• Performance / Definitions

◦ Speedup, Parallel efficiency

◦ Strong and Weak scaling

2

◦ Distributed vs Shared Memory Systems

• Computer Achitecture Review

◦ Know that memory bandwidth (and caches) can affect

performance

For example, changing loop order

◦ Know hardware limitations like number of cores and

hardware (hyper) threads can limit scaling

◦ Not going to ask low-level architecture questions

• Pthread Programming

◦ Know about race condition, deadlock

◦ Know roughly the layout of a pthreads program.

3

(define pthread t thread structures, pthread create,

pthread join)

◦ Know why you’d use a mutex.

• OpenMP Programming

◦ parallel directive

◦ scope (private vs shared)

◦ section

◦ for directive

• No MPI material as we’re running a week behind this

year due to snow

4

Shared Memory vs Distributed Systems

• So far we’ve mostly talked about shared memory systems

5

Shared Memory Systems

• Can have many cores, but has only one copy of Operating

System running

• All programs see one unified memory space

• Parallel code uses threads (pthreads, OpenMP)

• Threads can communicate simply by writing to memory

6

Distributed System

• Many systems each with own memory, communicate via

Message passing

• Communicate over a network

• Each node has own copy of Operating System

• Need to explicitly manage moving data between nodes

(MPI)

7

Shared Memory Limitations

• OpenMP is nice to use. But what if your problem won’t

fit on a single machine?

• How big can a shared-memory machine be?

8

Niche Large Shared Memory Systems

• SGI Altix/UV systems at least 4096 cores and 16TB

running one Linux image

http://www.techeye.net/hardware-2/sgi-builds-pittsburgh-4096-processor-core-16tb-shared-memory-supercomputer

• Digression about SGI (this was 2006-2012 or so)

• Use special NUMA-Linux architecture to spread cache

coherence across multiple machines.

• Origin TM and Onyx2 TM Theory of Operations Manual

9

http://www.techeye.net/hardware-2/sgi-builds-pittsburgh-4096-processor-core-16tb-shared-memory-supercomputer

More Recent Large Shared-Memory
Systems

• Intel Sierra Forest-AP has 288 e-cores

• AMD Threadripper 7000: 96 cores

AMD Bergemo 128 Zen 4c cores

• AmpereOne Aurora: 512 arm64 cores

10

Linux Scaling Limitations

• Linux currently(?) maxes out to 4096 cores or so

• Somewhat dated “Scaling Linux to the Extreme” paper

problems: cache contention could bring machine to halt

(if a global idle counter, each thread trying to increment

once a second)

lock contention, page cache

• What are the challenges? Locking contention?

11

Eventually you hit the limit

What’s the alternative?

Moving to a distributed system

12

Networks – Physical Layer

• Copper Wire vs Fiber Optics

• Which is faster? Which is lower latency? Which is

cheaper?

• Which can go further distance? Which can bend around

corners?

• Which is lower power?

• Latency vs Bandwidth

• Speed of Light in each? (0.6 - 0.85c for copper at RF

frequencies, 0.7c for fiber)

13

Networks – Copper

• Usually Twisted Pair (avoids noise)

• The faster you go you might need fancy connectors

• Trouble with high speeds, transmission line effects,

eventually hit microwave frequencies

14

Networks – Fiber

• Single-mode

◦ More expensive?

◦ Only one frequency?

• Multi-mode

◦ Shorter distance

15

Network Topology

• Packet-switching vs bus

• Ring, mesh, star, line, tree, fat-tree fully connected

• Cube, hypercube

• Mesh networks and routing

• Routing. Fully connected? Crossbar?

16

Network Types – Top 500 Nov 2022

This is constantly changing, hard to keep up year to year

interconnect #
100GB Ethernet 70
25GB Ethernet 70
10GB Ethernet 62
Infiniband EDR 35
Infiniband HDR 35
Intel Omnipath 34

Mellanox HDR Infiniband 26
Aries 25

Infiniband HDR 100 20
Slingshot-10 17

. . . -

17

Network Types – Ethernet

• Low-end (10/100/1GB/2.5GB/10GB) commodity

• Regular computers support it

• Cat-5/Cat-6 cables relatively cheap?

• How many ports on a switch? What do you do when

you need more?

• The faster schemes are complex, use a lot of power

18

Network Types – High-end Ethernet

• 25GB

◦ Introduced as 10GB not fast enough, but 40GB

expensive

◦ SFP28 transceivers, both optical and copper

• 40GB

◦ 802.3ba – 2010 – 1m backplane, 100m multi-mode

fiber, 10km single-mode fiber

◦ 802.3bg –

◦ 802.3bq – 2016 – 4-pair balanced twisted pair 30m

19

◦ QSFP+ transceivers, quad small form-factor

pluggable, four 10GB lanes

• 100GB

◦ 4 lanes of 25GB

20

Network Types – Infiniband

• low latency, most common in supercomputers

• Often a step ahead of ethernet (but more expensive)

• QSFP+ 3m 40Gb/s cable $30?

• copper or fiber, GB/s (links aggregated, 4x common)

•
SDR DDR QDR FDR-10 FDR EDR HDR NDR XDR GDR

4x 8 16 32 40 54 100 200 400 800 1600
12x 24 48 96 120 163 300 600 1200 2400 4800

• Note XDR/GDR just proposed (2023)

• RDMA, Ethernet over Infiniband

21

Network Types – HPE Slingshot

• HPE Cray Supercomputers

• Up to 200 Gb/s

• Handles lots of small packets

• 1.2 billion packets/second/port

• High Radix(?) 64-port 12.8TB/s switch

• Scale to 250k ports with max of 3 hops

• Price: “get quote” which means, a lot

22

Network Types – Fugaku Paper

• Hooking together 10k+ nodes?

• Mesh or 3d-torus?

• Blue-Genel L partition things so jobs run on subset

partitions that are also 3d-torus. Issues if a node goes

down

• Cray XT mesh and job can be scattered throughout, but

an have higher latency

• Instead, 6-dimensional torus

• Tofu interconnect for K computer (torus fusion)

23

Network Types – Older/Other

• Cray Gemini – Mesh/torus – 64Gb/s

• Fibrechannel

• Older: custom, Myrinet

24

Remote DMA

• Zero copy of data from network card directly into memory

of remote system (without CPU involvement)

• Can lead to really fast MPI transactions

• Avoids overhead of the OS TCP/IP stack

• Security?

• Infiniband can do it. Also RoCE (RDMA over Converged

Ethernet) https://www.fs.com/blog/rdma-over-converged-ethernet-guide-2208.html

25

https://www.fs.com/blog/rdma-over-converged-ethernet-guide-2208.html

Review – Setting up a Cluster

• Setting up machines (power/cooling)

• Installing operating system

• Setting up network

• Setting up head node?

• Setting up authentication

• Setting up shared storage (network file system)

• Setting up MPI

• Optimizing MPI (Infiniband?)

26

Programming a distributed System

27

Could you Open Code by Hand?

• Sort of how you can use pthread directly?

◦ Need to have copy of executable on each node (network

filesystem helps)

◦ Need to launch executable on remote system (ssh can

do this) authentication is a challenge

◦ Then write custom network code to open sockets and

communicate among them all

• Network code is a pain

• Just crying out for abstraction

28

Distributed Programming

• Parallel Virtual Machine (PVM) early implementation

• MPI was competitor

• MPI won somehow? Other proposals never took off?

• There are other ways to have compute clusters, like

Hadoop/Spark Map-Reduce, but this is not often used

in HPC

29

Message Passing Interface (MPI)

• Abstraction for sending data between separate processes

• The interesting part is these processes can be on different

nodes in a cluster

• You can put together an array of 100 floats, and say

“send this to process Y” and like magic it appears there.

• You don’t have to worry about setting up networks,

network addresses or ports, or decoding streams of bytes

• The code is also portable, so can move to another cluster

without a total rewrite

30

MPI (Message Passing Interface) History

• MPI 1.0 – 1994. MPI 3.0 – 2012

• MPI 1.2 widely used. MPI2.0 is complicated and

adoption not as high as it could be.

• MPICH – CH stands for Chameleon – Argonne and

Mississippi State

• MVAPICH – from Ohio State, based on MPICH

• OpenMPI – merger of 3 MPI implementations:

◦ FT-MPI from the University of Tennessee,

◦ LA-MPI from Los Alamos National Laboratory, and

31

◦ LAM/MPI from Indiana University

• Python Bindings, Java bindings, Matlab

32

MPI

Some references

https://hpc-tutorials.llnl.gov/mpi/

http://moss.csc.ncsu.edu/~mueller/cluster/mpi.guide.pdf

33

https://hpc-tutorials.llnl.gov/mpi/
http://moss.csc.ncsu.edu/~mueller/cluster/mpi.guide.pdf

Writing MPI code

• #include "mpi.h"

• Over 430 routines

• MPI Init() called before anything else

can pass in command line arguments that get sent to

all, but this isn’t always supported

• MPI Finalize() at the end

• Error handling – most errors just abort

34

Compiling/Running MPI Code

• use mpicc to compile

gcc or other compiler underneath, just sets up includes

and libraries for you.

• mpirun -n 4 ./test mpi

• mpiexec is possibly preferred over mpirun

• tools like slurm can handle running things for you

35

Communicators

• You can specify communicator groups, and only send

messages to specific groups.

• MPI COMM WORLD is the default, means all processes.

36

Rank

• Rank is the process number

• You can find out a processes rank

MPI_Comm_rank(MPI_Comm comm, int *rank);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

• You can find the number of ranks (processes):

MPI_Comm_size(MPI_Comm comm, int *size);

This gets all the processes in a communicator, but if you

use MPI_COMM_WORLD it gets all of them

37

How does Rank relate to Threads?

• Each process is given a rank number, 0 .. N

• The processes can be on different machines/nodes, but

don’t have to be

• Ranks are *not* threads. They are processes. They

do not share memory and communicate via distributed

messages.

• To confuse things, there’s no reason you can’t program

so that ranks contain multiple threads (using pthreads

or OpenMP in addition to MPI)

38

Other Possibly Useful Commands

• MPI_Get_processor_name() – gets name of machine running

on

• MPI_Get_version() – gets MPI version

• MPI_Initialized() – see if MPI has been initialized (useful

if you have optional modules)

39

Error Handling

• MPI SUCCESS means good result

• By default it aborts if any sort of error

• Can override this

40

Timing

• MPI_Wtime(); wallclock time in double floating point.

For PAPI-like measurements

• MPI_Wtick();

41

Point to Point Operations

• Buffering – what happens if we do a send but receiving

side not ready?

• Blocking – blocking calls returns after it is safe to modify

your send buffer. Not necessarily mean it has been sent,

may just have been buffered to send. Blocking receive

means only returns when all data received

• Non-blocking – return immediately. Not safe to change

buffers until you know it is finished. Wait routines for

42

this.

• Order – messages will not overtake each other. Send #1

and #2 to same receive, #1 will be received first

• Fairness – no guarantee of fairness. Process 1 and 2

both send to same receive on 3. No guarantee which

one is received

43

MPI Send – send data block

• blocking – MPI_Send(buffer,count,type,dest,tag,comm);

• non-block – MPI_Isend(buffer,count,type,dest,tag,comm,request);

• Parameters

◦ buffer – pointer to the data buffer

◦ count – number of items to send

◦ type – MPI predefines a bunch. MPI CHAR, MPI INT,

MPI LONG, MPI DOUBLE, etc.

can also create own complex data types

◦ destination – rank to send it to

44

◦ Tag – arbitrary integer uniquely identifying message.

Can pick yourself. 0-32767 guaranteed, can be higher.

◦ Communicator – can specify subgroups. Usually use

MPI COMM WORLD

◦ request – on non-blocking this is a handle to the

request that can be queried later to see that status

45

MPI Recv – receive data block

• block – MPI_Recv(buffer,count,type,source,tag,comm,status);

• non-block – MPI_Irecv(buffer,count,type,source,tag,comm,request);

• Parameters

◦ buffer – pointer to the data buffer

◦ count – number of items to send

◦ type – MPI predefines again

◦ source – rank to receive from. Also can be

MPI ANY SOURCE

◦ Tag – arbitrary integer uniquely identifying message.

46

◦ Communicator – can specify subgroups. Usually use

MPI COMM WORLD

◦ status – status of the receive, a struct in C

has the source, tag, and info on bytes received

◦ request – on non-blocking this is a handle to the

request that can be queried later to see that status

47

Handling non-blocking

• MPI_Wait() – wait until done

• MPI_Test() – test to see if done

• Use the request value in conjunction with them

48

Fancier blocking send/receives

• Lots, with various type of blocking and buffer attaching

and synchronous/asynchronous

• For example MPI_Ssend() will wait until it receives

confirmation that the remote process got the data

49

Sample code

/* MPI Send Example */

#include <stdio.h>

#include "mpi.h"

#define ARRAYSIZE 1024*1024

int main(int argc , char **argv) {

int numtasks , rank;

int result ,i;

int A[ARRAYSIZE];

MPI_Status Stat;

int count;

result = MPI_Init (&argc ,&argv);

if (result != MPI_SUCCESS) {

printf ("Error starting MPI program !.\n");

MPI_Abort(MPI_COMM_WORLD , result);

}

MPI_Comm_size(MPI_COMM_WORLD ,& numtasks);

50

MPI_Comm_rank(MPI_COMM_WORLD ,&rank);

printf("Number of tasks= %d My rank= %d\n",

numtasks ,rank);

if (rank ==0) {

/* Initialize Array */

printf("Initializing array\n");

for(i=0;i<ARRAYSIZE;i++) {

A[i]=1;

}

for(i=1;i<numtasks;i++) {

printf("Sending %d ints to %d\n",

ARRAYSIZE ,i);

result = MPI_Send(A, /* buffer */

ARRAYSIZE , /* count */

MPI_INT , /* type */

i, /* destination */

13, /* tag */

MPI_COMM_WORLD);

}

}

else {

51

result = MPI_Recv(A, /* buffer */

ARRAYSIZE , /* count */

MPI_INT , /* type */

0, /* source */

13, /* tag */

MPI_COMM_WORLD ,

&Stat);

result = MPI_Get_count (&Stat , MPI_INT , &count);

printf("\tTask %d: Received %d ints from task %d with tag %d \n",

rank , count , Stat.MPI_SOURCE , Stat.MPI_TAG);

}

int sum=0, remote_sum =0;

for(i=rank*(ARRAYSIZE/numtasks);i<(rank +1)*(ARRAYSIZE/numtasks);i++) {

sum+=A[i];

}

if (rank ==0) {

for(i=1;i<numtasks;i++) {

result = MPI_Recv (& remote_sum , /* buffer */

1, /* count */

MPI_INT , /* type */

52

MPI_ANY_SOURCE , /* source */

13, /* tag */

MPI_COMM_WORLD ,

&Stat);

result = MPI_Get_count (&Stat , MPI_INT , &count);

printf("\tTask %d: (%d) Received %d int from task %d with tag %d \n",

rank ,remote_sum ,count , Stat.MPI_SOURCE , Stat.MPI_TAG);

sum+= remote_sum;

}

printf("Total: %d\n",sum);

}

else {

printf("\tRank %d Sending %d\n",rank ,sum);

result = MPI_Send (&sum , /* buffer */

1, /* count */

MPI_INT , /* type */

0, /* destination */

13, /* tag */

MPI_COMM_WORLD);

}

MPI_Finalize ();

}

53

