
ECE 574 – Cluster Computing
Lecture 12

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

11 March 2025

https://web.eece.maine.edu/~vweaver


Announcements

• HW#4 will be graded soon

• HW#6 will be posted soon

• Midterm grades not finished yet

1



MPI continued

Some references

https://hpc-tutorials.llnl.gov/mpi/

http://moss.csc.ncsu.edu/~mueller/cluster/mpi.guide.pdf

https://cvw.cac.cornell.edu/MPIcc/default

2

https://hpc-tutorials.llnl.gov/mpi/
http://moss.csc.ncsu.edu/~mueller/cluster/mpi.guide.pdf
https://cvw.cac.cornell.edu/MPIcc/default


MPI Send – send data block

• blocking – MPI_Send(buffer,count,type,dest,tag,comm);

• non-block – MPI_Isend(buffer,count,type,dest,tag,comm,request);

• Parameters

◦ buffer – pointer to the data buffer

◦ count – number of items to send

◦ type – MPI predefines a bunch. MPI CHAR, MPI INT,

MPI LONG, MPI DOUBLE, etc.

can also create own complex data types

◦ destination – rank to send it to

3



◦ Tag – arbitrary integer uniquely identifying message.

Can pick yourself. 0-32767 guaranteed, can be higher.

◦ Communicator – can specify subgroups. Usually use

MPI COMM WORLD

◦ request – on non-blocking this is a handle to the

request that can be queried later to see that status

4



MPI Recv – receive data block

• block – MPI_Recv(buffer,count,type,source,tag,comm,status);

• non-block – MPI_Irecv(buffer,count,type,source,tag,comm,request);

• Parameters

◦ buffer – pointer to the data buffer

◦ count – number of items to send

◦ type – MPI predefines again

◦ source – rank to receive from. Also can be

MPI ANY SOURCE

◦ Tag – arbitrary integer uniquely identifying message.

5



◦ Communicator – can specify subgroups. Usually use

MPI COMM WORLD

◦ status – status of the receive, a struct in C

has the source, tag, and info on bytes received

◦ request – on non-blocking this is a handle to the

request that can be queried later to see that status

6



How to send data efficiently to all ranks?

• Rank 0 could send to each individual, take a while

• Some sort of tree, 0 to 1 and 2, 1 sends to 3 and 4, etc.

• Can we broadcast instead?

7



Collective Communication

• All must participate or there can be problems.

• Do not take tag arguments

• Can only operate on MPI defined data types, not custom

• Operations

◦ Synchronization – all processes wait

◦ Data Movement – broadcast, scatter-gather

scatter = take one structure and split among processes

gather = take data from all processes and combine it

◦ Reduction – one process combines results of all others

8



MPI Barrier()

• All processes wait at this point.

• MPI Barrier (comm)

9



MPI Bcast()

MPI_Bcast()
root

10



MPI Bcast() – notes

• MPI_Bcast (&buffer ,count ,datatype ,root ,comm);

• Sends data from the root rank to each other rank.

• Is blocking; when encountering a Bcast all nodes wait

until they have received the data.

• There is no need to receive; the root sends the data and

all other ranks will receive, just with the one command

• After command executes, all ranks will hsave same data

in buffer

11



MPI Scatter()

root
MPI_Scatter()

rank 0
send_data

recv_data

recv_data
rank 0

rank 1

rank 2

rank 3

recv_data

recv_data

12



MPI Scatter() – notes

• MPI_Scatter (&send_data ,sendcnt ,sendtype ,&recv_data ,

recvcnt ,recvtype ,root ,comm);

• Copies sendcnt sized chunks of sendbuf to each rank’s

recvbuf

• root also gets a share of data (just a local copy)

• Can use

MPI IN PLACE as the recv data to avoid needing

separate input and output arrays

• Note: copies to beginning of buffer

13



MPI Gather()

MPI_Gather()
root

recv_data

rank 2

send_data

send_data

send_data

rank 3
send_data

rank 1

rank 0

14



MPI Gather() – notes

• MPI_Gather (&send_data ,sendcnt ,sendtype ,&recv_data ,

recvcount ,recvtype ,root ,comm);

• Copies recvcount sized chunks of sendbuf from each

rank to recvbuf in root, offset by recvcount for full

result

• NOTE values start at beginning of each rank’s sendbuf

• Can use

MPI IN PLACE as the send data to avoid needing

separate input and output arrays (complex though, see

example)

15



Scatter/Gather Boundary issues

• *NOTE* If the size of the data you are sending is not

an even multiple of the number of ranks you’ll have to

manually handle the extra

• How?

◦ Have the root manually handle the extra at end?

◦ Pad your data to be a multiple of number of ranks and

ignore the extra?

◦ MPI_Scatterv() and MPI_Gatherv() routines let you send

vectors (chunks of varying length) but complex to use

16



MPI Scatterv()

• int MPI_Scatterv (&send_data ,sendcounts [],displs[],

sendtype ,&recv_data ,recvcount ,recvtype ,root ,comm);

• Vector scatter

• Send non-contiguous chunks

• In addition to regular scatter parameters, a list of start

offsets and lengths.

17



MPI Gatherv()

• int MPI_Gatherv (&send_data ,sendcount ,sendtype ,

&recv_data , recvcounts [], displs[],

recvtype , root , comm);

• Vector gather

• Can gather non-contiguous chunks

• In addition to regular scatter parameters, a list of start

offsets and lengths.

18



MPI Reduce()

• MPI_Reduce(void* send_data , void* recv_data ,

int count , MPI_Datatype datatype , MPI_Op op ,

int root , MPI_Comm communicator );

• Operations

◦ MPI MAX,MPI MIN – max, min

◦ MPI SUM – sum

◦ MPI PROD – product

◦ MPI LAND, MPI BAND – logical/bitwise and

◦ MPI LOR,MPI BOR – logical/bitwise OR

◦ MPI LXOR,MPI BXOR – logical/bitwise XOR

19



◦ MPI MAXLOC,MPI MINLOC – value and location

◦ Can also create custom

20



MPI Allgather()

• Gathers, to all

• Equivalent of gathering back to root, then rebroadcasting

to all

21



MPI Allreduce()

• MPI_Allreduce(void* send_data , void* recv_data , int count ,

MPI_Datatype datatype , MPI_Op op , MPI_Comm communicator );

• Like an MPI Reduce followed by an MPI Bcast

• Once the reduction is done, broadcasts the results to all

processes

22



MPI Reduce scatter()

• Does a reduction, then scatters the results

23



MPI Alltoall()

• Scatter data from all to all

24



MPI Scan()

• Lets you do partial reductions.

25



Custom Data Types

• You can create custom data types that aren’t the MPI

default, sort of like structures.

• Open question: can you just cast your data into integers

and uncast on the other side? This is not recommended

and might have issues on a heterogeneous cluster

26



Groups vs Communicators

• Can create custom groups if you don’t want to broadcast

to all.

• Use groups to create Communicators, then can use

instead of WORLD

27



Virtual Topologies

• Your workload might map to a geometric shape (grid or

graph)

• In a mesh type problem you might only want to talk to

the 4 surrounding ranks and none of the others, so might

be handy if can be placed in hardware to take advantage

of that

• Doesn’t have to match underlying hardware

28



Examples

See the provided tar file with example code.

29



Running MPI code

• mpiexec -np 4 ./mpi test

Runs on 4 ranks

note the space between np and 4 is important and things

won’t work if you leave it out

• You’ll often see mpirun instead. Some implementations

have that, but it’s not the official standard way.

30



Running MPI code with slurm

• sbatch -n X time coarse.sh

Runs on X ranks

Even on multi-node cluster might run some on same

machine if it has multiple cores.

31



Send Example

• mpi send.c

• Run with mpiexec -np 4 ./mpi send

• Sends 1 million integers (each with value of 1) to each

node

• Each adds up 1/4th then sends only the sum (a single

int) back

• Notice this is a lot like pthreads where we have to do a

lot of work manually.

• Things to note:

32



◦ MPI_Init() at start

passes command line args, on most implementations

this will essentially broadcast the command line args

across all ranks so

◦ MPI_Comm_size() to get number of ranks

◦ MPI_Comm_rank() to get our rank

◦ MPI_Send() in this case only from rank 0

◦ MPI_Recv() can use status value to get size, source, and

tag

33



Blocking vs NonBlock Example

• mpi nonblock.c

• Uses Isend() which doesn’t block

• Shows code using MPI Test() to see if done and

MPI Wait() to wait until completion

34



Wtime (Wallclock Time) Example

• mpi wtime.c

• Same as previous example. but with timing

• Unlike PAPI, the time is returned as a floating point

value

35



Barrier Example

• mpi barrier.c

• Each machine sleeps some time based on rank

• All wait at barrier until last one arrives

• Note: seeing all printfs because in this case all ranks on

same machine. This might not happen when running on

a real cluster

36



Bcast Example

• mpi bcast.c

• Same buffer on each machine

• At the broadcast function, one sends its version of the

buffer and the rest wait until they receive the value.

• In the end they all have the same value

37



Scatter Example

• mpi scatter.c

• Instead of sending all of A, breaks it into chunks and

sends it to B in each rank.

• Note that while the program runs ordered as expected,

the printfs might not reflect this

• Why would sendcount/recvcount ever be different? (is

it a waste having two parameters)? Possibly so you can

have equivalent data types (1000 x 1 byte vs 1x1000

byte) as arguments

38



Gather Example

• mpi gather.c

• Each rank has its own copy of A which it sets to entirely

its rank number

• Then a gather happens on rank0, of one int each. So

what should B have in it? (0, 1, 2, 3, ...)

• What happens if prime number of ranks like 7. Boundary

issue.

39



Gather Offset Example

• mpi gather offset.c

• Way to gather *not* from start of array

• Have to do some pointer mater

40



Gatherv Example

• mpi gatherv.c

• Need to allocate counts and offsets arrays and fill in.

• Can special case to handle uneven ending.

41



Gatherv MPI IN PLACE

• mpi gatherv in place.c

• Turns out you have to special case rank 0 and use

MPI IN PLACE, for other ranks just set receive buffer

to NULL

42



Reduce Example

• mpi reduce.c

• Instead of waiting in a loop for tasks finishing and then

adding up the results one by one, use a reduction instead.

• Many MPI routines are convenience things that could be

done by a sequence of separate commands.

43



HW#6 Preview

This has been moved to the Lecture#13 class notes

44


