
ECE 574 – Cluster Computing
Lecture 13

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

13 March 2025

https://web.eece.maine.edu/~vweaver

Announcements

• HW#4, HW#5: still grading

• Midterm: also still grading

• HW#6 was posted: due March 28th

1

HW#6 Preview

• Getting MPI going can be difficult especially if you don’t

have a strong C background

• I’m describing here a suggested way to get the coarse

code going that is known to work

• We’ll also have HW#7 where we do some fine-grained

work

2

HW#6 – Broadcasting the Image Size

• First get rank and num ranks

• Load the jpeg, but only in Rank 0.

Could you load it in all? Why or why not?

• Remember this is message passing, so the other ranks

do not have any idea what image you are loading or the

size, we need to send a message with this info

• First we need to tell the other ranks the sizes:

image.xsize, image.ysize, image.depth

• Why? So we can allocate the space for image.pixels.

3

Normally the jpeg load does this for us, but since we

only load in rank 0 we have to manually calloc() on

the other ranks

• How do you send the 3 sizes?

◦ Just send 3 integers.

◦ Could set up custom struct but not worth it.

◦ Most straightforward way is to create an array of 3

ints, and MPI Bcast() it (instead you could send/recv

or send one at a time, but probably more code / less

efficient)

◦ Make sure you use MPI INT as the type

4

◦ Make sure image.x, etc, get set to the values that

you sent across

5

HW#6 – Allocating Space

• Allocate space for the input image on all ranks,

something like
image.pixels=calloc(image.x*image.y*image.depth ,sizeof(char));

• Note that sobel x.pixels, etc, will also get allocated

but the provided code does that for you.

6

HW#6 – Broadcasting Image Data

• Use MPI Bcast() to broadcast image data from rank 0

to other ranks.

• Note that Bcast acts as a send from the root source

(usually root 0) but as a receive on all other ranks

(there’s no need to separately have the other ranks

receive)
result = MPI_Bcast(image.pixels , /* buffer */

image.x*image.y*image.depth ,/* count */

MPI_CHAR , /* type */

0, /* root source */

MPI_COMM_WORLD);

• Be sure to broadcast to image.pixels, not image,

7

otherwise you’ll overwrite the struct data

• Be sure you are sending MPI CHAR not some other type,

as that will also do bad things

• It can be tricky getting this all working. I’ve added some

simple checksum code so you can verify the right data

is sent to all ranks before moving on to the next part

8

HW#6 Guide – Run the Convolution

• You’ll need to split up the work like we did with the

pthread code

• Splitting it up at the row level is probably best

• You know your rank and total

• If there are 4 ranks, then each rank should calculate

ysize/4 rows

• Simplest way is to have ystart as rank*(ysize/num ranks

and yend as (rank+1)*(ysize/num ranks

• This looks like it might overlap, but if in loop use < it

9

should be OK (is it problem if you do overlap?)

• So if 4 ranks then the assignments would be:

◦ 0: 0 . . . ((ysize/4))

◦ 1: (ysize/4) . . . ((ysize/4)*2)

◦ 2: ((ysize/4)*2) . . . ((ysize/4)*3)

◦ 3: ((ysize/4)*3) . . . ysize

• Note it’s easy to have off by one errors: if your loop is

for(y=ystart;y<=yend;y++) then you’d actually not a -1 on the end

of the limits

• Printing the limits is a good way to help debug when

you have errors

10

• Limits being wrong is a common cause for

segfaults/crashing

• Be sure the leftover rows get calculated if not an even

division of ranks into rows! Easiest way to do that is

check if you’re in the last rank and just make the ending

row the end of the image

• Be sure you handle skipping y=0 and y=(ysize-1) cases.

Do that *after* you calculate the initial split or you can

miss lines

11

HW#6 Guide – Gathering Back the Results

• Once your sobel is done, need to gather back to root

• Note: it’s probably easiest to gather the results into

a new image (so gather from sobelx.image into

sobelx new.image). Gathering from sobelx.image into

sobelx.image itself is tricky

• MPI Gather();
count=(sobel_x.ysize/num_ranks)* sobel_x.xsize*sobel_x.depth;

MPI_Gather(sobel_x.pixels , /* source buffer */

count , /* count */

MPI_CHAR , /* type */

sobel_x_new.pixels , /* receive buffer */

count , /* count */

MPI_CHAR , /* type */

12

0, /* root source */

MPI_COMM_WORLD);

• Note: gathers by default will gather from the start of an

array, whereas your convolve code probably puts things

at an offset (TODO: plot)

• There are three ways to do this once your convolve is

done

◦ The easiest way is to place the output at the start

of the result array (by subtracting y start from your

y value). (note be sure this is the actual y start, not

one that’s been adjusted for the border)

◦ Another way is to do a memcpy() (or maybe an

13

memmove() to move the results to the start of the

array,

◦ Another way is you can change the source buffer

to point to the proper offset in the data array

sobel x.pixels[rank*total size/num-ranks]

14

HW#6 Guide – Finishing Up

• After sobel x, also do sobel y

• For this homework just do combine step serially in

rank#0

• Will do fine-grained combine in HW#7

• Write out result. Remember to only write out on rank#0

(what happens if do this on all ranks?)

15

HW#6 Guide – Handling Non-Multiple
Image Data

• Getting this to work at all is the important first step.

However the code above only works properly if you your

ysize is an even multiple of the number of ranks.

• Butterfinger is easy, as 320x320 nicely divides by a lot

of sizes, but the spacestation example is not as nice

• The most straightforward way is to replace

MPI Gather() with MPI Gatherv()

• You will need to set up two additional arrays:

16

◦ One with offsets

◦ Ones with lengths

• This is tricky as these are in bytes, so you can re-use

your yoffsets from before but you’ll need to multiply by

xsize and depth. Since we’re evenly dividing the offset

should be fairly trivial

• For the last rank just have the length have the extra part.

This is mildly tricky to calculate, use the % operator to

get the remainder and add it on.

17

HW#6 – Common Failures

• Top of image there, rest is black – usually this means

you haven’t adjusted your data before gathering, and

gather is grabbing from the top of your image which is

empty on non-rank0

• Top is fine, but weirdly offset and maybe rainbow for

rest – this happens if you gather in (ysize*xsize*3)/ranks

chunks rather than (ysize/ranks)*xsize*3. Those look

like they are the same, but it’s an integer divide so

truncating means the latter will grab things in a non-

18

multiple of the rowsize.

• Looks correct but md5sum doesn’t match – this is usually

because you forgot to handle the top/bottom border, or

else your ystart/yend ranges have small gaps in them

19

Additional notes on MPI

• Hard to think about. Running on different machine, so

setting variables *does not* get set on all, like it does

with OpenMP or pthreads

• Tricky: before you can send to rest, they have to know

how big of an area to allocate to store it in. How will

they know this?

• MPI does not give good error messages. OpenMPI worse

than MPICH. Will often get segfault, hang forever, or

20

weird stuff where it runs 4 single-threaded copies of

program rather than one 4-threaded

• Many of the commands are a bit non-intuitive

21

MPI Debugging (HW#6) notes

• MPI is *not* shared memory

• Picture having 4 nodes, each running a copy of your

program *without* MPI.

Also picture the various MPI routines as a network socket

(or web browser query).

Things initialized the same in all will have same values,

no need to initialize.

Things initialized in only one node will need to be

somehow broadcast for the values to be the same in all.

22

• Problems debugging memory issues.

Valgrind should work, but Debian compiles MPI with

checkpoint support which breaks Valgrind :(

Mpirun supposed to have -gdb option, doesn’t seem to

work.

• What does work is mpiexec -n num xterm -e gdb

./your app but this depends on you running X11 plus

logging into Haswell-EP with X forwarding (-Y) enabled

• The bug most people hit is improper bounds, leading to

segfault. You can debug that with printfs of your bounds

• MPI does give useful error messages sometimes

23

• Some of the problem is malloc/calloc

24

Other MPI Notes

• MPI Gather(sendarray, 100, MPI INT, rbuf, 100,

MPI INT, root, comm);

rbuf ignored on all but root

• All collective ops are blocking by default, so you don’t

need an implicit barrier

• MPI Gather(), same as if each process did an

MPI Send() and the root note did in a loop

MPI Receive() incrementing the offset.

25

• MPI Gather() aliasing

cannot gather into same pointer, will get an aliasing

error

Can use MPI IN PLACE instead of the send buffer on

rank0.

Why is this an error? Partly because you cannot alias in

Fortran. Just avoids potential memory copying errors.

What happens if your gathers overlap?

• Can you handle non-even buffer sizes with MPI Gather?

No. Two options.

◦ One, just handle in one of other threads (either master

26

or send/receive from other)

◦ Two, use MPI Gatherv() where you specify the

displacement and sizes of what you want to gather

27

MPI and slurm

• HW #SBATCH --tasks-per-node=4

• -N = number of nodes

• -n = number of tasks, default is one task per node?

• N=4 tasks-per-node=4, 16

N=4 tasks-per-node=4, sbatch -n 8, 16 (N=nodes,

n=tasks)

N=4 tasks-per-node=4, sbatch -N 8, 32

28

nothing, sbatch -N 8, 32

nothing, sbatch -n 8, (8, 2 nodes * 4 each)

nothing, sbatch -N 8 -n 8 (8, 8 nodes * 1 each)

29

SLURM update

• Probably not an issue this year, but be careful if your

job somehow gets stuck and runs forever. It might keep

other people’s jobs from running.

• The provided slurm scripts in theory timeout after 10

minutes

• If your job gets stuck, be nice and kill it (using scancel)

• In theory I could set a hard limit on the cluster but I

don’t for now as I’m worried it might break something

• If something does go wrong with the cluster e-mail me

30

to let me know

31

Reliability in HPC

Good reference is a class I took a long time ago, CS717 at

Cornell:

http://greg.bronevetsky.com/CS717FA2004/Lectures.html

32

http://greg.bronevetsky.com/CS717FA2004/Lectures.html

Sources of Failure

• Software Failure

◦ Buggy Code

◦ System misconfiguration

• Hardware Failure

◦ Failed capacitors

◦ Loose wires

◦ Tin whiskers (lead-free solder)

◦ Lightning strike

◦ Radiation

33

◦ Moving parts wear out

• Malicious Failure

◦ Hacker attack

• Environment issues

◦ Fire in datacenter

◦ Loss of cooling during heat wave

34

Types of fault

• Permanent Faults – same input will always result in same

failure

• Transient Faults – go away, temporary, harder to figure

out

35

What do we do on faults?

• Detect and recover?

• Just fail?

• Can we still get correct results?

36

Metrics

• MTBF – mean time before failure

• FIT (failure in Time)

One failure in billion hours. 1000 years MTBF is 114FIT.

Zero error rate is 0FIT but infinite MTBF Designers just

FIT because additive.

• Nines. Five nines 99.999% uptime (5.25 minutes of

downtime a year)

Four nines, 52 minutes. Six nines 31 seconds.

• Bathtub curve

37

Architectural Vulnerability factor

• Some bit flips matter less

• (branch predictor) others more (caches) some even more

(PC)

• Parts of memory that have dead code, unused values

• Low mantissa bits in floating bit numbers

• Colors in graphics shown for only a frame

38

Things you can do for reliable Hardware

39

Hardware Replication / Redundancy

• Lock step – Have multiple machines / threads running

same code in lock-step Check to see if results match. If

not match, problem. If replicated a lot, vote, and say

most correct is right result.

• RAID – (redundant array of inexpensive disks)

• Memory checksums – caches, busses

• Power conditioning, surge protection, backup generators,

UPS

40

• Hot-swappable redundant hardware

41

Lower Level (Inside your Computer)

• Replicate units (ALU, etc)

• Replicate threads or important data wires

• CRCs and parity checks on all busses, caches, and

memories

42

Lower-Level Problems

43

Soft errors/Radiation

• Chips so small, that radiation can flip bits. Thermal and

Power supply noise too.

• Soft errors – excess charge from radiation. Usually not

permanent.

• Sometime called SEU (single event upset)

44

Radiation

• Neutrons: from cosmic rays, can cause “silicon recoil”

Can cause Boron (doped silicon) to fission into Li and

alpha.

• Alpha particles: from radioactive decay

• Cosmic rays – higher up you are, more faults Denver

3-5x neutron flux than sea level. Denver more than here.

Airplanes. Satellites and space probes are radiation-

hardened due to this.

• Smaller devices, more likely can flip bit.

45

Shielding

• Neutrons: 3 feet concrete reduce flux by 50%

• alpha: sheet of paper can block, but problem comes

from radioactivity in chips themselves

46

Case Studies

• “May and Woods Incident” first widely reported problem.

Intel 2107 16k DRAM chips, problem traced to ceramics

packaging downstream of Uranium mine.

• “Hera Problem” IBM having problem. 210Po

contamination from bottle cleaning equipment.

• “Sun e-cache” Ultra-SPARC-II did not have ECC on

cache for performance reasons. High failure rate.

47

