
ECE 574 – Cluster Computing
Lecture 14

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

25 March 2025

https://web.eece.maine.edu/~vweaver

Announcements

• HW#6 due Friday.

• Project topics due Thursday.

1

Remember Project Topics Due

• Send e-mail with topic and group members by March

27th (Thurs)

• Can work alone or in groups of 2 to 3

• Do something interesting parallel computing related

• Can use any operating system and written in any

language (asm, C, python, C++, Java, etc.)

• Coding, benchmarking

• Past projects: SIMD, parallelizing code, comparison of C

vs Python, parallelizing matlab code, calculating physical

2

constants in parallel, building own cluster, raytracing,

GPU shader coding

• Will be a final writeup, and then a 10 minute presentation

and demo in front of the class during last week of classes.

3

HW#4 Review – Code

• Usually the difficult part is splitting up the bounds

This year that wasn’t too bad

• The Coarse code people mostly did fine on

• The Fine code caused the most trouble

◦ The most trouble was trying to get the paramaters

properly into a struct to pass in

◦ Each thread *needs* its own struct.

If you have one argument struct, pass it to a thread,

then modify it and try to pass to another, there’s a

4

race condition where all the threads are using the same

struct and any changes you make in the main thread

will be seen by all

◦ Generally the way to do this is calloc() or malloc() (I

know, low-level C)

◦ Some people were using VLA (Variable Length Arrays)

where you can do something like declare
int num_threads =4;

struct thread_arguments[num_threads];

This is a relatively new feature of C so I forget it will

work (originally array sizes needed to be a constant).

Do note if you use this, the array gets allocated when

5

declared, if you later change num threads it doesn’t

go back and re-allocate the array size and in that case

your code might overrun the buffer.

◦ You are free to add members to the argument struct.

You probably will have to for when you call compare.

6

HW#4 Review – Deadlock Question

• The example code problem is an example where deadlock

can occur

• The problem is both threads at the same time can take

lock1/lock2 and then when they get to the next locks

lock2/lock1 they both get stuck waiting for the other

to be free, but since they are both cross-waiting it will

never happen, no progress is made, deadlock

• Why not just re-arrange the locks? In real life lock

ordering issues aren’t always so simple

7

this type of thing might happen in an OS

thread1 thread2

printf("\b"); // (beeps) play_sound();

...

console_lock(); // to safely sound_lock(); // get sound

... // print // hw access

... error happens

beep(); print_error();

... console_lock(); // to safely

sound_lock(); // to get // print

// sound hw access

8

Hand back Midterms

Average was 85%

9

Lower-Level Problems

10

Soft errors/Radiation

• Chips so small, that radiation can flip bits. Thermal and

Power supply noise too.

• Soft errors – excess charge from radiation. Usually not

permanent.

• Sometime called SEU (single event upset)

11

Radiation

• Neutrons: from cosmic rays, can cause “silicon recoil”

Can cause Boron (doped silicon) to fission into Li and

alpha.

• Alpha particles: from radioactive decay

• Cosmic rays – higher up you are, more faults Denver

3-5x neutron flux than sea level. Denver more than here.

Airplanes. Satellites and space probes are radiation-

hardened due to this.

• Smaller devices, more likely can flip bit.

12

Shielding

• Neutrons: 3 feet concrete reduce flux by 50%

• alpha: sheet of paper can block, but problem comes

from radioactivity in chips themselves

13

Case Studies

• “May and Woods Incident” first widely reported problem.

Intel 2107 16k DRAM chips, problem traced to ceramics

packaging downstream of Uranium mine.

• “Hera Problem” IBM having problem. 210Po

contamination from bottle cleaning equipment.

• “Sun e-cache” Ultra-SPARC-II did not have ECC on

cache for performance reasons. High failure rate.

14

Hardware Fixes

• Using doping less susceptible to Boron fission

• Use low-radiation solder

• Silicon-on-Insulator

• Double-gate devices (two gates per transistor)

• Larger transistor sizes

• Circuits that handle glitches better.

15

Memory Fixes

• ECC code

• spread bits out. Right now can flip adjacent bits, flip

too many can’t correct.

• Memory scrubbing: going through and periodically

reading all mem to find bit flips.

16

Extreme Testing

• Single event upset characterization of the Pentium MMX

and Pentium II microprocessors using proton irradiation”,

IEEE Transactions on Nuclear Science, 1999.

• Pentium II, took off-shelf chip and irradiated it with

protons. Only CPU, rest shielded with lead. Irradiate

from bottom to avoid heatsink

• Various errors, freeze to blue screen. no power glitches

or “latchup” 85% hangs, 14% cache errors no ALU or

FPU errors detected.

17

Memory Failures

• Give brief review of SRAM vs DRAM

• Memory Errors in Modern Systems

ASPLOS 2015

• Battling Borked Bits

IEEE Spectrum December 2015

18

Intentional Memory Failures?

• Rowhammer

• DRAM is just holding RAM contents in capacitors, which

leak away and need to be constantly refreshed

• Need to refresh every 32 to 64ms

• If you access a memory location a lot, it can also make

nearby locations drain faster and make them have bit

flips

• Interesting project?

19

Failure and Error Rate – Examples

20

Cassini Saturn Probe

• Gary M. Swift and Steven M. Guertin. “In-Flight

Observations of Multiple-Bit Upset in DRAMs””. Jet

Propulsion Laboratory

• Cassini, flight recorders, each with 2.5GB RAM

• Single bit error rate of 280 errors/day

21

Google Datacenter

• Google SIGMETRICS 2009 paper

• Schroeder, Bianca; Pinheiro, Eduardo; Weber, Wolf-

Dietrich (2009). “DRAM Errors in the Wild: A Large-

Scale Field Study”. SIGMETRICS/Performance (ACM).

• 25-70k errors per billion hours per megabit

• 5 single bit errors in 8GB per hour

22

Various Supercomputer

• http://www.computerworld.com/article/2493336/computer-hardware/supercomputers-face-growing-resilience-problems.

html ASCI White when came out, MTBF 5hrs, got it to

55hrs

• “Analysis of the Tradeoffs between Energy and Run Time

for Multilevel Checkpointing” PMBS 2014

◦ Sequoia MTBF around 1 day

◦ Blue Waters: 2 per day,

◦ Titan MTBF: less than a day

◦ 20% of computation is recovering from failures (big

23

http://www.computerworld.com/article/2493336/computer-hardware/supercomputers-face-growing-resilience-problems.html
http://www.computerworld.com/article/2493336/computer-hardware/supercomputers-face-growing-resilience-problems.html

energy waste)

• Scalable In-memory Checkpoint with Automatic Restart

on Failures. Xiang Ni, Esteban Meneses, Laxmikant V.

Kal

Most of failures do not take down more than one node

Jaguar/Titan 92% crashes single-node crashes

24

SSMD/ORNL (2015)

• https://csmd.ornl.gov/highlight/failures-large-scale-systems-long-term-measurement-analysis-and-implications

• 1.2 billion hours Jaguar/Titan/EOS

• MTBF can change over time, optimal checkpoint might

depend on this

• Temporal and Spatial Locality

◦ Temporal, fail at same time. Things like voltage surge,

OS panic, filesystem error

◦ Spatial, failure in same location. Cooling/overheat

issues

25

https://csmd.ornl.gov/highlight/failures-large-scale-systems-long-term-measurement-analysis-and-implications

Frontier Supercomputer

• 10 oct 2022

• https://www.datacenterdynamics.com/en/news/frontier-supercomputer-suffering-daily-hardware-failures-during-testing/

• This also mentioned in the SC top500 video

• Problems with MPI Cray fabric

• Possibly also GPU issue under load

• MTBF hours, not days. “one day MTBF would be

amazing”

26

https://www.datacenterdynamics.com/en/news/frontier-supercomputer-suffering-daily-hardware-failures-during-testing/

GPU Lifetimes

• “GPU Lifetimes on Titan Supercomputer: Survival

Analysis and Reliability” by Ostrouchov et al

• https://www.christian-engelmann.info/publications/ostrouchov20gpu.pdf

• 18,688 GPUs do most of computing

• There have been three re-works

• Two to fix chassis issue

• One to fix resistors failing due to silver sulfide corrosion

• DBE (double bit errors) and OTB (off the bus errors,

i.e. GPU stop responding)

27

https://www.christian-engelmann.info/publications/ostrouchov20gpu.pdf

• MTBF for first batch around 3 years, but some fail more

quickly

• Survival Analysis methods (similar to those used in

medical field)

28

What can Software do to avoid HW
Problems

• Note that a lot of reliability bugs are very similar to

security bugs

• Programs crash due to out of bounds, memory overflows,

stack smashing

• Hardware is starting to add protections against these

types of things (Ryzen3 shadow stack)

29

Byzantine Faults

• This is a long-standing issue in distributed system

research

• Can you have code that runs correctly even if the

underlying hardware is unreliable

• A system where you can’t trust the hardware is often

said to have Byzantine Faults

30

Byzantine Failure

• Byzantine General Problem, Lamport et al

◦ Generals surround a city.

◦ Want to all attack or all retreat; doing part way will

fail

◦ Might be traitorous generals with complex motives

◦ (split their vote, if 5R 4A, tell the 5A and 4R).

◦ Unreliable messengers

31

N-version software

• Implement same code many different ways

• Vote on result.

• Need a tight spec to make sure results will all match.

32

Algorithm Based

• Parity checks, CRC

• Spread out work so that if one gives wrong result it can

be checked. Overlap work.

• Add some extra values to calculation that can be

checked, can tell if something went wrong

33

Data Structure Based

• Extra state in data structure or checksum so can tell if

it gets corrupted.

34

Control Flow Checking

• Knows where code should be allowed to jump to

• If you jump somewhere impossible, checker stops things

• Hardware these days can help with this

• For example: compiler knows all callers of function.

Return from function should always return back to one

of these locations.

35

Application Level Checkpointing

• Checkpoint your program state periodically.

• If a failure takes down a program or hardware node, you

can restore to last checkpoint rather than starting from

scratch.

• Two kinds

◦ manual — (you save out your state manually and have

to write code to restart from arbitrary point)

◦ Automatic – kernel stores everything possible about

your state and can restart a program from a snapshot.

36

Checkpointing Difficulty

• Must save all program state, network connections, RAM

contents, disk state, open files, etc.

• Hard to do (I’ve written one). Some support in Linux

kernel, need lots of patches as some syscalls are write-

only.

37

Checkpointing Overhead

• Checkpoints have high overhead. Have to stop while

taking them? Write GB to disk?

• Multilevel checkpoint – big checkpoint occasionally and

smaller subcheckpoints

38

Linux Checkpointing Support

• TODO: a little more info on this project

39

Crash Only Software

• Crash-only software – crashing and restarting can take

less time than clean reboot.

• So why write code to cleanly shutdown? Instead write

your code so it can handle crashes cleanly. That way

your cleanup code is tested every exit, rather than rarely

on a crash.

40

Approximate Computing

• Approximate Computing – some algorithms don’t

necessarily need the “right” value

• Video rendering, voice recognition, web search, robotics,

GPS, image processing

41

BOINC

• Someone asked how distributed computing worked for

things like Folding at Home

• Use Berkeley Open Infrastructure for Network

Computing

• Sort of like grid computing

• As of 2020 worldwide added up to 41 PFLOPS (would

be #5 on top500)

• Researchers upload binaries and datasets, the servers

then distribute them to volunteers by client they run

42

• Server is just really old-fashioned PHP/MySQL LAMP

server

• Server also validates results, also hands out workloads

multiple times to be sure the answers match

• My friend runs the Machine Learning Comprehension at

home project.

43

