ECE 574 — Cluster Computing
Lecture 16

Vince Weaver
https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

1 April 2025


https://web.eece.maine.edu/~vweaver

Announcements

o HW+7 due Friday. Pi cluster should be all set up
Let me know if you need help with HW#6, ideally sooner
rather than later

e Don't forget project topics were due! Please send if you
haven't



From Last Time

e WWhy no SLI anymore?
o Short answer was it never worked very well
o Both game and driver had to support it, and as cards
got better / more power / more PCle lanes it didn't
make sense anymore
e What goes on in USB-C cord?
o USB-C has "alternate” mode that can use some of
pairs for either 4x PCle 3.0, or else DisplayPort
o There's a lot else going on with USB-C / USB-4 that's

-y 2



a bit much to get into this class



Interfaces for 3D Graphics

e OpenGL — SGI (Khronos)

e DirectX — Microsoft (Direct3d)

e Vulkan (sort of next gen OpenGL. Lower level, closer to
hardware)

e Metal — from Apple

e WebGL — javascript/web

e OpenGL ES — embedded subset



3D Graphics

e Two common ways to do 3D graphics
o Ray tracing, very accurate, but slow
o Rasterization, low quality, but fast enough to do in
real time
e Can do either completely in software on CPU (and people
did), but much faster if you accelerate with hardware



Ray-tracing

e TODO: diagram

e Objects placed in 3D space

e Rays of light traced from eye through each pixel on
screen until hit object

e Based on material they hit, reflect, refract, take on color,
etc

e Can do reverse where light source sends out rays and
you bounce them around until they hit pixel on screen



Question: how does Hardware Raytrace
work

e Accelerate in hardware ray-tracing, though usually only
partially

e NVIDIA: Optix Library

e You describe how rays behave

e Detalls are a bit hard to get



Ray-casting / Ray-marching

e Hard to find good definition

e Ray-tracing the intersection of Ray with Object found
with a single math calculation

e Ray-marching you estimate distances to objects and sort
of “jump” to that location before doing more detailed
check

e Ray-casting you sort of walk forward in steady increments
until you hit objects



Rasterization

e TODO: show diagram
e Objects made up of many triangles (or quads)
e Send vertices to card
e Project to 2d screen
e Broken up to pixels and shaded/textured
Color/shading based on angle with light source (normals)
e Clipping, depth



Rasterization on GPU

e CPU send list of vertices to GPU.

e Transform (vertex processor) (convert from world space
to image space). 3d translation to 2d, calculate lighting.
Operate on 4-wide vectors (x,y,z,w in projected space,
r.g,b,a color space)

e Rasterizer — transform vertexes/vectors into a grid.
Fragments. break up to pixels and anti-alias

e Shader (Fragment processor) compute color for each
pixel. Use textures if necessary (texture memory, mostly

-y 10



read)
e Write out to framebuffer (mostly write)
e Z-buffer for depth /visibility

11



Rasterization Downsides

e Can't calculate shadows (have to do hacks)

e Can't easily do transparency (mirrors) or refraction
(lenses)

e On the plus side it is fast

/Y 12



GPU Pipeline

e Old / Traditional
o Implement rasterization in fixed hardware
o Fixed pipeline (lots of triangles).
e Modern
o Much more flexible, programmable almost general-
purpose compute units
o Old pipeline can still be implemented in software via
the fancier interface

-y 13



GPUs

e Display memory often broken up into tiles (improves

cache loca
e Massively
the frame

ity)
parallel matrix-processing CPUs that write to

buffer (or can be used for calculation)

e [exture control, 3d state, vectors

e Front-buffer (written out), Back Buffer (being rendered)
Z-buffer (depth)

e Originally just did lighting and triangle calculations. Now
shader languages and fully generic processing

14



GPGPUs

e Can we use GPUs as an accelerator?

e Started when the vertex and fragment processors became
generically programmable (originally to allow more
advanced shading and lighting calculations)

e By having generic use can adapt to different workloads,
some having more vertex operations and some more
fragment

-y 15



Is GPGPU worth it?

e Newer example: (TODO, UPDATE)

— Cascade Lake, 1 TFLOP (64-bit floating point)
— NVIDIA 3090 36 TFLOPs

e Older examp

— Raspberry

€

Pi, 7T00MHz, 0.177 GFLOPS

— On-board GPU: Video Core IV: 24 GFLOPS

16



Graphics vs Programmable Use

Vertex
Polygon
Fragment
Texture
Image

Vertex Processing
Polygon Setup
Per-pixel math

Data fetch, Blending

/-buffer, anti-alias

Data
Lists
Data
Data
Data

MIMD processing
SIMD Rasterization
Programmable SIMD
Data Fetch
Predicated Write

17



Key ldea

e using many slimmed down cores

e have single instruction stream operate across many cores
(SIMD)

e avoid latency (slow textures, etc) by working on another
group when one stalls

e Avoid memory latency with calculation, not cache (which
is how CPUs do it)

-y 18



Latency vs Throughput

e CPUs = Low latency, low throughput

e GPUs = high latency, high throughput

e CPUs optimized to try to get lowest latency (caches);
with no parallelism need fast access to memory to avoid
stalls

e GPUs optimized for throughput. Best throughput for all
better than low-latency for one

/Y 19



GPU Benefits

e Specialized hardware, concentrating on arithmetic.
Transistors for ALUs not cache.

e Fast 32-bit floating point (16-bit? 87 47)

e Driven by commodity gaming, so much faster than would

ve if only HPC people using them.

e Accuracy? 64-bit floating point? 32-bit floating point?
16-bit floating point? Doesn’'t matter as much if color
slightly off for a frame in your video game.

e highly parallel

-y 20



GPU Challenges

e Originally optimized for 3d-graphics, not always ideal for
other things

e Need to port code, usually can't just recompile cpu code.

e Companies secretive.

e serial code
e a lot of control flow
e ot of off-chip memory transfers

-y 21



GPGPU Programming

e GPU companies do not like to reveal what their chips do
at the low/assembly level
e Abstraction provided for programming them
o CUDA (Nvidia)
o ROCm (Radeon Open Compute Platform) (AMD)
o OpenCL (Everyone else) — can in theory take parallel
code and map to CPU, GPU, FPGA, DSP, etc
o OpenACC?
o OneAPI (new attempt at CUDA replacement)

-y 2



e Article on Future of AMD vs CUDA

https://www.hpcwire.com/2023/10/05/how-amd-may-get-across-the-cuda-moat/

23


https://www.hpcwire.com/2023/10/05/how-amd-may-get-across-the-cuda-moat/

Shader Programming

e [here are competitions. Also see shadertoy.com
e Vertex Shader
o Vertex transform
o Object space to clip space
o Compute colors, normals, texture co-ords
o Can displace/distort (move vertices: wave flag)
o Can animate (move vertices: move fish)
e Fragment Shader
o Compute and color

24


shadertoy.com

o Get data from verteces and textures
o Can make better materials. Glossy, reflections, bumpy,
shadows

-y 25



GLSL Shader Programming

e Similar to C code

e Based on OpenGL

® vertex
o Each time screen drawn main() called once per vertex
o Massively parallel
o Have vars. Can get positions

e Fragment
o Each time screen drawn main() called once per pixel
o Can get x/y

-y 26



Example Shader 3.0 (DX9) Capabilities —
Vertex Processor

e They are up to Pixel Shader 5.0 now

e 512 static / 65536 dynamic instructions

e Up to 32 temporary registers

e Simple flow control

e Texturing — texture data can be fetched during vertex
operations

e Can do a four-wide SIMD MAD (multiply ADD) and a
scalar op per cycle:

-y 21



o EXP, EXPP, LIT, LOGP (exponential)
o RCP, RSQ (reciprocal, r-square-root)
o SIN, COS (trig)

28



Example Shader 3.0 (DX9) capatbilities—
Fragment Processor

e 65536 static / 65536 dynamic instructions (but can time
out if takes too long)

e Supports conditional branches and loops

e fp32 and fpl6 internal precision

e Can do 4-wide MAD and 4-wide DP4 (dot product)

/Y 29



GPUs in HPC

e Widely used in Top500
e NVIDIA

o A100 / H100 — large expensive GPUs
o AMD

o Instinct

30



NVIDIA GPUs

o We'll look at NVIDIA GPUs first

31



NVIDIA Generations / Compute Capability

e Tesla/Fermi (deprecated)

o 3: Kepler

e 5: Maxwell

e 0: Pascal

e 7: Volta (pro) / 7.5: Turing (consumer)
e 3: Ampere

e 9: Lovelace/Hopper

e Blackwell

e Feynman

-y 32



NVIDIA Workstation vs Gaming

e Quadro (Workstation) vs Geforce (Gaming) (note from
2023, they renamed these)
o Quadro generally more RAM. higher Bus width
o Fancier Drivers
o Optimized for CAD type stuff and compute, rather
than games
o Higher reliability
o Quadro better support for double-precision floats
o More compute cores

/Y 33



o Power limits




Specs for Blackwell GPUs

e Named for David Blackwell, mathematician

e Successor to Hopper, bx performance (at 4 bit fp)

e 20 PFLOPs (at 4 bit fp), 300W? B100?

e Two dies, 10TB/s NVLINK, 8 HBM3e stacks (192GB)

e Tower of them get get over an exaflop (a lot of power,
and again 4 bit fp, for Al)

-y 35



GPU hardware in my Lab

e Can use these for projects. | mostly get these for power
measurement tests.
e NVIDIA RTX A2000 in Skylake
o 6GB GDDR®6, 192-bit, 288 GB/s
o Ampere, PCledx16
o 3328 CUDA cores, 104 tensor cores, 26 RT cores
o 8 TFLOPS single-precision, RT 15.6 TFLOPS, Tensor
64 TFLOPS
o TOW, DirectX 12.07, Vulkan 1.2

/Y 36



e NVIDIA RTX A2000 GA106 in RaptorlLake
e Roughly same as above but with 12GB RAM
e NVIDIA Quadro P2000 in Skylake (old)
o 5GB GDDR5, 160-bit, 140 GB/s
o 1024 cores, Pascal, PCle3x16
o 7T5W, DirectX 12.0, Vulkan 1.0
e NVIDIA Quadro P400 in Haswell-EP
o 2GB GDDRS5, 64-bit, up to 32 GB/s
o 256 cores, Pascal architecture
o 30W, OpenGL 4.5, DirectX 12.0
o Low-power for server, as runs in 1U rack

37



e NVIDIA Quadro K2200 in Quadro
o So old the drivers don't want to support it anymore
o 4GB GDDR5, 128-bit 80 GB/s
o 640 cores, Maxwell architecture

o 68W, OpenGL 4.5, DirectX 11.2

38



CUDA Programming background

https://docs.nvidia.com/cuda/cuda-c-programming-guide/

39


https://docs.nvidia.com/cuda/cuda-c-programming-guide/

CUDA - installing

On Linux need to install the proprietary NVIDIA drivers
Have to specify nonfree on Debian.

Debates over the years whether NVIDIA can have
oroprietary drivers; no one sued yet. (Depends on
whether they are a "derived work” or not. Linus refuses
to weigh in)

Sometimes have issues where drivers won't install
(currently having that issue on some of my machines)

VA A 4 10



GPGPU Summary

e CPUs designed for fastest single-thread performance
Lots of transistors for caching (to hide memory latency),
control flow (branch predictors), caches

e GPUs designed to run as many threads as possible as
once

Use other methods to hide memory latency (mostly by
moving to other threads if one batch is waiting)

-y a1



Programming a GPGPU (CUDA /OpenCL)

e Create a “kernel” which is a small GPU program that
runs on a single thread. This will be run on many cores
at a time.

e Allocate memory on the GPU and copy input data to it

e Launch the kernel to run many times in parallel. The
threads operate in lockstep, all executing the same
instruction in each thread.

e How is conditional execution handled? a lot like on
ARM. If/then/else. If the particular thread does not

-y 42



meet the condition, it just does nothing until the other
condition finishes executing.

e If more threads are needed the available on the GPU,
may need to break the problem up into smaller batches

of threads.
e Once computing is done, copy results back to the CPU.



CPU vs GPU Programming Difference

e The biggest difference: NO LOOPS

e You essentially collapse your loop, and run all the loop
iterations simultaneously.

-y ”



Flow Control, Branches

e Only recently added to GPUs, but at a performance
penalty.

e Often a lot like ARM conditional execution

-y 45



