
ECE 574 – Cluster Computing
Lecture 19

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

10 April 2025

https://web.eece.maine.edu/~vweaver


Announcements

• HW#9 will be posted (OpenCL)

• Don’t forget midterm exam on Tuesday, 22 April

• Don’t forget HW#8 Due Friday

• Project status due 17th (see next slide)

• PAPI research opportunities or undergrad and grad

students

1



Project Status Update due Thursday 17th

• e-mail, one per group

• One sentence summary of project topic

• Any hardware/software waiting on

• Related work: 2 if alone, 4 if group

See pdf for full details Ideally academic

Don’t pay for ACM/IEEE, access through UMaine library

• Date you’d like to present April 29th (Tuesday) / May

1st (Thursday). Maybe earlier Thursday? Extra credit

for presenting early

2



OpenCL HW#9 Notes

• Mostly will be about converting your kernels from CUDA

to OpenCL, which is fairly straightforward

• I provide most of the annoying boilerplate code

• Trying out a few ICD files: NVIDIA, Intel, Generic

• Can we use intel integrated video on Haswell-ep? No

intel integrated video on Xeon! It has a Matrox g200

chip from 1998!

• Using optimized intel CPU driver, interesting to see the

result. Using 8-bit char data on a GPU is not optimal,

3



has to convert from int to float before doing calcs

• Questions about what things are faster, the CUDA

manual chapter 5 has an optimization guide which is

interesting to read.

4



Can You Use Clusters for non-parallel jobs?

• Yes

• You might just have a lot of copies of single jobs you

want to run

• You can use a cluster for this, including things like slurm

• Just don’t use MPI

• Story for clusters at Cornell used for comp arch

simulations

Not worth anyone’s trouble to parallelize them

5



Cloud Computing

• Grid Computing?

• In some ways similar to HPC clusters, others not

• High-performance networking and MPI not as important

• Often things like I/O for storage more important

• Running things in shared environment

• Often virtualized setups

6



Virtualization

• Lets you run multiple operating system images, giving

each the illusion that they are running on distinct

hardware.

• The OSes are context-switched between, much as

processes are context-switched under an OS

• When running inside a fully virtualized system, code

should not be able to tell it’s not running on bare metal

• The OSes are isolated and one crashing should not affect

any of others.

7



operating system

hardware

p
ro

c
e

s
s

p
ro

c
e

s
s

p
ro

c
e

s
s

p
ro

c
e

s
s

p
ro

c
e

s
s

p
ro

c
e

s
s

p
ro

c
e

s
s

p
ro

c
e

s
s

hypervisor

hardware

OS OS

8



Why virtualize?

• Server consolidation – if you have multiple servers,

each using 10% of CPU, can put them on one big server

• Security – can give each critical task its own full OS

instance, so if something goes wrong it won’t affect the

others (this is harder to do with processes on an OS)

• Multiple OSes – can run multiple OSes (Windows,

Linux, Etc) on same machine at same time

• Ease of deployment – can make OS snapshots/images

and can quickly bring up and down on other machine

9



Downsides of virtualization?

• Like any layer of abstraction: Overhead

• Performance slowdown

• Hardware failure take down multiple OSes

• Security: VM escape

information leakage/side channel attacks

10



Terms

• Guest – the operating system running inside a virtual

system

• Host – the operating system running on bare metal (may

be a hypervisor instead)

• VM (virtual machine) not virtual memory – the

software/hardware that provides the virtual hardware

interface

• Hypervisor – the software that controls bringing up and

controlling the guest operating systems

11



Are you ever running on real hardware?

• Some modern machines all you ever get to run on is the

VM

• VM (some power machines, ps3, never run on raw

hardware)

• Nested VM

• x86 SMM mode (system maintenance mode)

12



Full Simulation

• Emulate the entire CPU and all hardware in software

• Full system simulators, such as Qemu

• What’s the downside of this? (slow, slow, slow)

13



Full Virtualization

• “Virtualize the CPU”

Run instructions as normal, but anything that gives away

it is virtual must trap to the hypervisor.

• Trap on access to hardware and simulate (with Qemu or

similar)

• KVM

• VMware

14



Linux KVM

• Kernel-based virtual machine

• Hardware-assisted virtualization

• Requires CPU with hardware virtualization extensions

• Linux Kernel acts as hypervisor

• Provides /dev/kvm

◦ Sets up address space

◦ Provide boot firmware

◦ Display hardware

15



Setting up KVM

• Not horrible, but haven’t done it for a while

• Need to create disk image

• Getting network going (bridging to outside world) can

be challenge

• Tools to automate some of this stuff

16



Popek and Goldberg virtualization
requirements

Formal requirements for virtualizable third generation

architectures, Communications of the ACM, 1974.

• equivalence (fidelity): a program running under a VM

should behave identical to running on bare metal monitor

(VMM) should

• resource control (safety): VM must control all resources

• efficiency (performance): most instructions must execute

without intervention

17



Hardware Virtualization Extensions (CPU)

• IBM System/370 in 1972

• x86 chips by default were not, leak too much info.

• Intel VT-x and AMD-V

18



x86 virtualization

A Comparison of Software and Hardware Techniques for

x86 Virtualization by Adams and Agesen, ASPLOS 2006.

VMware managed full virt on 32-bit x86 using dynamic

binary instrumentation and segmentation.

• De-privilege: any attempt to read privileged info traps

and can be intercepted

• Shadow structures: need copies of things that can’t be

intercepted at CPU level, like page-tables. Need to trap

on access to these. True vs hidden page faults.

19



• x86 issues (assume protected mode)

◦ visible privileged state (see privilege mode when read

CS register; CPL (privilege level) lower 2 bits)

◦ Lack of traps when privileged instructions run at user-

level.

◦ popf (pop flags) changes both ALU and system flags

(IF, enable interrupts). When run non-privileged

ignores this, doesn’t trap.

• Intel VT-x and AMD-V

◦ 2006

◦ Adds virtual machine code block

20



◦ Intel: extended page tables (nested page tables)

◦ VMCS shadowing: allow nested VMs

21



Paravirtualization

• Hypervisor creates a special API that the guest OS uses

(operating system must be modified)

• Can be faster (talk directly to hypervisor, no need to

emulate hardware)

• Xen – uses stripped down Linux as hypervisor?

• Need specially compiled kernel that knows about

hypervisor interfaces

22



What if you don’t need full Virtualization?

23



Containers

• Look like you have own copy of OS, but just walled

off more thoroughly than normal Unix process. More

lightweight than VM

• One of more processes isolated from rest of system

• Self contained, all code needed to run included

in theory isolated from changes in underlying

OS/distribution

• Sort of halfway between running regular process vs

running in VM

24



• VMs virtualize the hardware, Containers virtualize the

OS

25



Linux Containers

• LXD/LXC/LXCFS – Linux container infrastructure

linuxcontainers.org

• LXC – Linux Containers

◦ Idea of containers dates back to FreeBSD jails in 1990s

More of a security idea at the time

◦ Linux support implemented out of cgroups (control

groups) and systemd

◦ Might have some manner of filesystem overlay

26

linuxcontainers.org


Why Use Containers?

• Reproducibility

• Cross-system portability

• Don’t need to install dependencies

• Downsides

◦ More disk space

◦ Security updates: have to update every container

27



Docker

• Software can be installed on Linux to allow running

containers

• Lightweight virtualization, runs on top of normal Linux

but uses containers to isolate from other instances

• Uses cgroups, namespaces, union filesystems

• Unlike full virtualization, does not require another copy

of the OS

• Also a way of packaging

• Written in go

28



• Needs root permissions?

• Difference from virtualization?

◦ Doesn’t need full disk image (large)

◦ Doesn’t need large reserved memory range

◦ Diagram

(Host-Hypervisor)-(GuestOS/Libs/App)

(Host-Docker)-(Libs/apps)

29



Docker Swarm

• Easily create clusters

• This more like the old definition of clusters, rather than

HPC

• More like an automatic failover type situation

• Load balancing

30



Kubernetes

• How to pronounce? koo-ber-neh-teez (k8s) Word is

Greek for captain

• Originally from google? Lighter version of project borg?

• Pods full of containers that can communicate locally, to

communicate remotely through an IP?

• Pods work together, use DNS and can share load

• Can run on top of Docker (but doesn’t have to)

• Also written in go

• Master node, worker nodes

31



Kubernetes vs Docker

• Container Orchestration

• https://containerjournal.com/2019/01/14/kubernetes-vs-docker-a-primer/

32

https://containerjournal.com/2019/01/14/kubernetes-vs-docker-a-primer/


HPC and Containers

• Singularity – openmpi/mpi in containers

◦ SIF image format, single file so works better with

parallel filesystems

◦ Can be used with slurm

• udocker

• socker

• pcocc

• Easier for sysadmin, they don’t have to go through lots

of effort to get versions/dependencies installed

33



• Easier for user, don’t have to do complex installations

from code from scratch and bug sysadmin

• Downsides?

◦ Swarm – not secure, too simple for HPC workloads

◦ K8s – hard to setup, poor scheduler / resource

management

◦ Can’t use TORQUE or slurm to schedule?

◦ shifter project to let docker run from slurm

34



HPC Package Management

• HPC clusters are often limited environments with

conservative sysadmins

• What if you need software not installed?

• Virtualization or Containers might not be available

• HPC package managers?

35



Related: Flatpak vs Snap

• Traditional Linux distributions have package managers

to install software for system-wide use

• Flatpak/Snap – more like an app-store model

◦ Self contained code that comes with all libraries needed

◦ Don’t (usually) have to worry about underlying OS

changes breaking things with your app

◦ Downsides: extra disk space (duplicated files)

security: instead of security fixes in one common

library, need to update every package

36



Installing HPC Software

• HPC systems complex, users not always computer

experts

• Can be really hard getting hastily written code to compile

and run on new machine even if it’s the same operating

system

• For example, genomics people might standardize on

ubuntu/perl/python with specific versions but other

groups maybe centos with other versions

37



HPC Package Managers

• Easybuild – setup for downloading and building HPC

software automatically, with reproducible builds

• GUIX HPC – per-user package management

• NIX – package manager and build system

• SPACK – HPC package manager for R, C, C++ and

Fortran

38



Performance Measurement in the Cloud

This is based on research I did at UTK back in the early

2010s

39



Traditional HPC

AB

↓

↓
C

40



Cloud-based HPC

AB

↓

↓
C

41



Cloud Tradeoffs

Pros

• No AC bill

• No electricity bill

• No need to spend $$$

on infrastructure

Cons

• Unexpected outages

• Data held hostage

• Infrastructure not

designed for HPC

42



Measuring Performance in the Cloud

First let’s just measure runtime

This is difficult because in virtualized environments

43



Simplified Model of Time Measurement

Hardware

Operating System

Application

Time

44



Then the VM gets involved

Hardware

Time

Application

Operating System

VM Layer

45



Then you have multiple VMs

Hardware

Time

VM Layer

App. ? ?

OS1 OS2 OS2OS1

46



So What Can We Do?

Hope we have exclusive access and measure wall-clock time.

47



Measuring Time Externally

• Ideally have local hardware access, root, and hooks into

the VM system

• Otherwise, you can sit there with a watch

• Danciu et al. send UDP packet to remote server

• Most of these are not possible in a true “cloud” setup

48



Measuring Time From Within Guest

• Use gettimeofday() or clock gettime()

• This might be the only interface we have

• How bad can it be?

49



Cloud Performance Measurement

With High Performance Computing moving to the cloud,

virtualization-aware performance measurement tools are a

necessity.

50



Performance API (PAPI)

• Widely-used, Cross-platform, Open-Source Performance

Measurement Library

⇒ Linux, AIX, FreeBSD, Solaris

⇒ x86, Power, ARM, MIPS

⇒ BlueGene P/Q, Cray

• Use directly or via high-level tools (TAU, Perfsuite,

Vampir, Scalasca, HPCToolkit)

51



PAPI-V

Virtualization-aware PAPI, or “PAPI-V” extends PAPI to

be useful in cloud environments.

• Report virtual system info

• Provide enhanced timing info

• Virtualization-related components

• Virtualized Counters

52



Virtual System Info

• Virtualization vendor obtained via CPUID, reported in

hw info.virtual vendor string

• Supported by KVM, Xen, VMware, etc.

• Info for user, helps with bug reports

53



The Timing Problem

• Time is an important component of most performance

measurements

• The concept of “time” gets fluid once virtualization is

involved

• Ideally you want wallclock time; this is hard to get

within a VM guest

54



PAPI Timing Interface

On Linux the timing functions use the POSIX timer

interface

• PAPI get real usec();

⇒clock gettime(CLOCK REALTIME);

• PAPI get virtual usec();

⇒clock gettime(CLOCK THREAD CPUTIME ID);

55



Timing Behavior on Bare Metal

0 2 4 6 8 10
Other CPU-hogging Apps Running

0

500000

1000000

T
im

e
 (

u
s
)

Time to run MMM, Actual Core2 Hardware

PAPI_get_real_usec()

PAPI_get_virt_usec()

56



Timing Behavior on Virtualized System

0 2 4 6 8 10
Other CPU-hogging VMs Running

0

500000

1000000

T
im

e
 (

u
s
)

Time to run MMM, Same Core2, KVM Guest

PAPI_get_real_usec()

PAPI_get_virt_usec()

57



Stealtime

What is needed is a way for accounting for time the VM

is scheduled out.

• Since 2.6.11 Linux can provide this stealtime information

• It is system wide, not per-process, which makes auto-

adjusting PAPI timing measurements problematic

• PAPI 5.0 provides a stealtime component

58



Timing Adjusted with Stealtime

0 2 4 6 8 10
Other CPU-hogging jobs Running

0

50000

100000

T
im

e 
(u

s)
Time to run MMM, Core2, KVM Guest

PAPI_get_real_usec()
PAPI_get_virt_usec()
System Stealtime
PAPI_get_virt_usec() adjusted for stealtime

59



Network Components

PAPI also has components for measuring Network I/O.

• Generic network component

• Infiniband component

• Myrinet component

60



Infiniband DirectPath Comparison

61



VMware Component

PAPI supports a component that provides access to

VMware-specific interfaces

• pseudo-performance counters – extra timing info via

rdpmc

• VMware guest SDK (ESX only) – provides various other

performance related measurements, including stealtime

62



Virtualized Performance Counters

The VM host can virtualize performance counter access by

trapping access to the MSRs, and saving/restoring values

when suspending/resuming VMs.

• KVM supports this as of Linux 3.2 with a sufficiently

recent version of the QEMU/KVM tool (with some

limitations)

• Xen supports this as of Linux 3.5

• VMware support is underway

63


