
ECE 574 – Cluster Computing
Lecture 19

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

10 April 2025

https://web.eece.maine.edu/~vweaver


Announcements

• HW#9 will be posted (OpenCL)

• Don’t forget midterm exam on Tuesday, 22 April

• Don’t forget HW#8 Due Friday

• Project status due 17th (see next slide)

• PAPI research opportunities or undergrad and grad

students
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Project Status Update due Thursday 17th

• e-mail, one per group

• One sentence summary of project topic

• Any hardware/software waiting on

• Related work: 2 if alone, 4 if group

See pdf for full details Ideally academic

Don’t pay for ACM/IEEE, access through UMaine library

• Date you’d like to present April 29th (Tuesday) / May

1st (Thursday). Maybe earlier Thursday? Extra credit

for presenting early
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OpenCL HW#9 Notes

• Mostly will be about converting your kernels from CUDA

to OpenCL, which is fairly straightforward

• I provide most of the annoying boilerplate code

• Trying out a few ICD files: NVIDIA, Intel, Generic

• Can we use intel integrated video on Haswell-ep? No

intel integrated video on Xeon! It has a Matrox g200

chip from 1998!

• Using optimized intel CPU driver, interesting to see the

result. Using 8-bit char data on a GPU is not optimal,
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has to convert from int to float before doing calcs

• Questions about what things are faster, the CUDA

manual chapter 5 has an optimization guide which is

interesting to read.
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Can You Use Clusters for non-parallel jobs?

• Yes

• You might just have a lot of copies of single jobs you

want to run

• You can use a cluster for this, including things like slurm

• Just don’t use MPI

• Story for clusters at Cornell used for comp arch

simulations

Not worth anyone’s trouble to parallelize them
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Cloud Computing

• Grid Computing?

• In some ways similar to HPC clusters, others not

• High-performance networking and MPI not as important

• Often things like I/O for storage more important

• Running things in shared environment

• Often virtualized setups
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Virtualization

• Lets you run multiple operating system images, giving

each the illusion that they are running on distinct

hardware.

• The OSes are context-switched between, much as

processes are context-switched under an OS

• When running inside a fully virtualized system, code

should not be able to tell it’s not running on bare metal

• The OSes are isolated and one crashing should not affect

any of others.
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Why virtualize?

• Server consolidation – if you have multiple servers,

each using 10% of CPU, can put them on one big server

• Security – can give each critical task its own full OS

instance, so if something goes wrong it won’t affect the

others (this is harder to do with processes on an OS)

• Multiple OSes – can run multiple OSes (Windows,

Linux, Etc) on same machine at same time

• Ease of deployment – can make OS snapshots/images

and can quickly bring up and down on other machine
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Downsides of virtualization?

• Like any layer of abstraction: Overhead

• Performance slowdown

• Hardware failure take down multiple OSes

• Security: VM escape

information leakage/side channel attacks
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Terms

• Guest – the operating system running inside a virtual

system

• Host – the operating system running on bare metal (may

be a hypervisor instead)

• VM (virtual machine) not virtual memory – the

software/hardware that provides the virtual hardware

interface

• Hypervisor – the software that controls bringing up and

controlling the guest operating systems
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Are you ever running on real hardware?

• Some modern machines all you ever get to run on is the

VM

• VM (some power machines, ps3, never run on raw

hardware)

• Nested VM

• x86 SMM mode (system maintenance mode)
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Full Simulation

• Emulate the entire CPU and all hardware in software

• Full system simulators, such as Qemu

• What’s the downside of this? (slow, slow, slow)
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Full Virtualization

• “Virtualize the CPU”

Run instructions as normal, but anything that gives away

it is virtual must trap to the hypervisor.

• Trap on access to hardware and simulate (with Qemu or

similar)

• KVM

• VMware
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Linux KVM

• Kernel-based virtual machine

• Hardware-assisted virtualization

• Requires CPU with hardware virtualization extensions

• Linux Kernel acts as hypervisor

• Provides /dev/kvm

◦ Sets up address space

◦ Provide boot firmware

◦ Display hardware
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Setting up KVM

• Not horrible, but haven’t done it for a while

• Need to create disk image

• Getting network going (bridging to outside world) can

be challenge

• Tools to automate some of this stuff
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Popek and Goldberg virtualization
requirements

Formal requirements for virtualizable third generation

architectures, Communications of the ACM, 1974.

• equivalence (fidelity): a program running under a VM

should behave identical to running on bare metal monitor

(VMM) should

• resource control (safety): VM must control all resources

• efficiency (performance): most instructions must execute

without intervention
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Hardware Virtualization Extensions (CPU)

• IBM System/370 in 1972

• x86 chips by default were not, leak too much info.

• Intel VT-x and AMD-V
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x86 virtualization

A Comparison of Software and Hardware Techniques for

x86 Virtualization by Adams and Agesen, ASPLOS 2006.

VMware managed full virt on 32-bit x86 using dynamic

binary instrumentation and segmentation.

• De-privilege: any attempt to read privileged info traps

and can be intercepted

• Shadow structures: need copies of things that can’t be

intercepted at CPU level, like page-tables. Need to trap

on access to these. True vs hidden page faults.
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• x86 issues (assume protected mode)

◦ visible privileged state (see privilege mode when read

CS register; CPL (privilege level) lower 2 bits)

◦ Lack of traps when privileged instructions run at user-

level.

◦ popf (pop flags) changes both ALU and system flags

(IF, enable interrupts). When run non-privileged

ignores this, doesn’t trap.

• Intel VT-x and AMD-V

◦ 2006

◦ Adds virtual machine code block
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◦ Intel: extended page tables (nested page tables)

◦ VMCS shadowing: allow nested VMs
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Paravirtualization

• Hypervisor creates a special API that the guest OS uses

(operating system must be modified)

• Can be faster (talk directly to hypervisor, no need to

emulate hardware)

• Xen – uses stripped down Linux as hypervisor?

• Need specially compiled kernel that knows about

hypervisor interfaces
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What if you don’t need full Virtualization?
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Containers

• Look like you have own copy of OS, but just walled

off more thoroughly than normal Unix process. More

lightweight than VM

• One of more processes isolated from rest of system

• Self contained, all code needed to run included

in theory isolated from changes in underlying

OS/distribution

• Sort of halfway between running regular process vs

running in VM
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• VMs virtualize the hardware, Containers virtualize the

OS
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Linux Containers

• LXD/LXC/LXCFS – Linux container infrastructure

linuxcontainers.org

• LXC – Linux Containers

◦ Idea of containers dates back to FreeBSD jails in 1990s

More of a security idea at the time

◦ Linux support implemented out of cgroups (control

groups) and systemd

◦ Might have some manner of filesystem overlay
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Why Use Containers?

• Reproducibility

• Cross-system portability

• Don’t need to install dependencies

• Downsides

◦ More disk space

◦ Security updates: have to update every container

27



Docker

• Software can be installed on Linux to allow running

containers

• Lightweight virtualization, runs on top of normal Linux

but uses containers to isolate from other instances

• Uses cgroups, namespaces, union filesystems

• Unlike full virtualization, does not require another copy

of the OS

• Also a way of packaging

• Written in go
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• Needs root permissions?

• Difference from virtualization?

◦ Doesn’t need full disk image (large)

◦ Doesn’t need large reserved memory range

◦ Diagram

(Host-Hypervisor)-(GuestOS/Libs/App)

(Host-Docker)-(Libs/apps)
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Docker Swarm

• Easily create clusters

• This more like the old definition of clusters, rather than

HPC

• More like an automatic failover type situation

• Load balancing
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Kubernetes

• How to pronounce? koo-ber-neh-teez (k8s) Word is

Greek for captain

• Originally from google? Lighter version of project borg?

• Pods full of containers that can communicate locally, to

communicate remotely through an IP?

• Pods work together, use DNS and can share load

• Can run on top of Docker (but doesn’t have to)

• Also written in go

• Master node, worker nodes
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Kubernetes vs Docker

• Container Orchestration

• https://containerjournal.com/2019/01/14/kubernetes-vs-docker-a-primer/
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HPC and Containers

• Singularity – openmpi/mpi in containers

◦ SIF image format, single file so works better with

parallel filesystems

◦ Can be used with slurm

• udocker

• socker

• pcocc

• Easier for sysadmin, they don’t have to go through lots

of effort to get versions/dependencies installed
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• Easier for user, don’t have to do complex installations

from code from scratch and bug sysadmin

• Downsides?

◦ Swarm – not secure, too simple for HPC workloads

◦ K8s – hard to setup, poor scheduler / resource

management

◦ Can’t use TORQUE or slurm to schedule?

◦ shifter project to let docker run from slurm
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HPC Package Management

• HPC clusters are often limited environments with

conservative sysadmins

• What if you need software not installed?

• Virtualization or Containers might not be available

• HPC package managers?
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Related: Flatpak vs Snap

• Traditional Linux distributions have package managers

to install software for system-wide use

• Flatpak/Snap – more like an app-store model

◦ Self contained code that comes with all libraries needed

◦ Don’t (usually) have to worry about underlying OS

changes breaking things with your app

◦ Downsides: extra disk space (duplicated files)

security: instead of security fixes in one common

library, need to update every package
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Installing HPC Software

• HPC systems complex, users not always computer

experts

• Can be really hard getting hastily written code to compile

and run on new machine even if it’s the same operating

system

• For example, genomics people might standardize on

ubuntu/perl/python with specific versions but other

groups maybe centos with other versions
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HPC Package Managers

• Easybuild – setup for downloading and building HPC

software automatically, with reproducible builds

• GUIX HPC – per-user package management

• NIX – package manager and build system

• SPACK – HPC package manager for R, C, C++ and

Fortran
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Performance Measurement in the Cloud

This is based on research I did at UTK back in the early

2010s
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Cloud Tradeoffs

Pros

• No AC bill

• No electricity bill

• No need to spend $$$

on infrastructure

Cons

• Unexpected outages

• Data held hostage

• Infrastructure not

designed for HPC

42



Measuring Performance in the Cloud

First let’s just measure runtime

This is difficult because in virtualized environments
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Simplified Model of Time Measurement
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Then the VM gets involved
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Then you have multiple VMs
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So What Can We Do?

Hope we have exclusive access and measure wall-clock time.
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Measuring Time Externally

• Ideally have local hardware access, root, and hooks into

the VM system

• Otherwise, you can sit there with a watch

• Danciu et al. send UDP packet to remote server

• Most of these are not possible in a true “cloud” setup
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Measuring Time From Within Guest

• Use gettimeofday() or clock gettime()

• This might be the only interface we have

• How bad can it be?
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Cloud Performance Measurement

With High Performance Computing moving to the cloud,

virtualization-aware performance measurement tools are a

necessity.
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Performance API (PAPI)

• Widely-used, Cross-platform, Open-Source Performance

Measurement Library

⇒ Linux, AIX, FreeBSD, Solaris

⇒ x86, Power, ARM, MIPS

⇒ BlueGene P/Q, Cray

• Use directly or via high-level tools (TAU, Perfsuite,

Vampir, Scalasca, HPCToolkit)
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PAPI-V

Virtualization-aware PAPI, or “PAPI-V” extends PAPI to

be useful in cloud environments.

• Report virtual system info

• Provide enhanced timing info

• Virtualization-related components

• Virtualized Counters
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Virtual System Info

• Virtualization vendor obtained via CPUID, reported in

hw info.virtual vendor string

• Supported by KVM, Xen, VMware, etc.

• Info for user, helps with bug reports
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The Timing Problem

• Time is an important component of most performance

measurements

• The concept of “time” gets fluid once virtualization is

involved

• Ideally you want wallclock time; this is hard to get

within a VM guest
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PAPI Timing Interface

On Linux the timing functions use the POSIX timer

interface

• PAPI get real usec();

⇒clock gettime(CLOCK REALTIME);

• PAPI get virtual usec();

⇒clock gettime(CLOCK THREAD CPUTIME ID);
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Timing Behavior on Bare Metal
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Timing Behavior on Virtualized System
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Stealtime

What is needed is a way for accounting for time the VM

is scheduled out.

• Since 2.6.11 Linux can provide this stealtime information

• It is system wide, not per-process, which makes auto-

adjusting PAPI timing measurements problematic

• PAPI 5.0 provides a stealtime component
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Timing Adjusted with Stealtime
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Network Components

PAPI also has components for measuring Network I/O.

• Generic network component

• Infiniband component

• Myrinet component
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Infiniband DirectPath Comparison
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VMware Component

PAPI supports a component that provides access to

VMware-specific interfaces

• pseudo-performance counters – extra timing info via

rdpmc

• VMware guest SDK (ESX only) – provides various other

performance related measurements, including stealtime
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Virtualized Performance Counters

The VM host can virtualize performance counter access by

trapping access to the MSRs, and saving/restoring values

when suspending/resuming VMs.

• KVM supports this as of Linux 3.2 with a sufficiently

recent version of the QEMU/KVM tool (with some

limitations)

• Xen supports this as of Linux 3.5

• VMware support is underway
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