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Announcements

• Second Midterm will be Tuesday the 22nd (Tuesday)

Cumulative, though concentrating on recent material

• Project Status Report due today
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Midterm Preview

• Can have 1 page of notes (1 side, 8.5”x11”)

• Cumulative, but concentrating on stuff since last exam

• Performance, Speedup, Parallel efficiency, Scaling

• Shared Memory vs Distributed Systems

• Tradeoffs. Given code and hardware, would you use

◦ MPI – distributed systems, large problems

◦ OpenMP – shared memory, fit on one node / CPU

◦ CUDA – when you have an NVIDIA gpu

◦ OpenCL – when you have a non-NVIDIA gpu
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◦ pthreads – would you ever use if you didn’t have to?

• OpenMP: dynamic vs static scheduling

• MPI, especially its limitations

• GPGPU/CUDA/OpenCL: read code, know the tradeoffs

(overhead of copying memory around)

• BigData: sizes involved, distributed filesystems

• Reliability. Causes of errors. Tradeoffs of Checkpointing
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Traditional Ways to manage Data
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Databases / RDBMs

• Machines that store large amounts of data, often

optimized for fast retrieval

• Databases / Relational Database Management System

• Relational databases: store rows of data, with a key.

Each field has attribute.

Item, Name, Price, Color, Rating

• Rows and columns, think of it sort of like a big

spreadsheet
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SQL (structured query language)

• Standard for querying relational database (this was a

past “hot” computing topic)

• SELECT *

FROM Book

WHERE price > 100.00

ORDER BY title;

• Consistency?
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SQL Challenges

• Can have parallel and distributed databases too. It’s

more difficult with SQL

◦ Replication – task runs, making sure all the various

copies are kept in sync

◦ Duplication – there is a master, and all the others are

copies of the master. Users may only change master

• Main memory database – machines with 100TB of RAM?
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NoSQL Databases

• Scale-out architecture

Can increase performance by adding nodes (rather than

by upgrading single machine)

• Can store unstructured data (json, binary, text, sparse)

Doesn’t have to map to rows

• Can spread out on other machines, into cloud
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Cluster Filesystem

• Filesystem shared by multiple machines/nodes

• Can be centralized or distributed
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Shared-disk Filesystem

• Shared-disk filesystem – shares disk at block level

• SGI CXFS

IBM GPFS

Oracle Cluster Filesystem (OCFS)

RedHat GFS

Many Others

• RedHat GFS2

Distributed Lock Manager
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DAS – Direct Attached Storage

• typically how you hookup a hard-drive

• No network involved

• Relative low latency, but not distributed.

• Can be used as cache

• Can be exported for use as part of distributed filesystems
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SAN – Storage Area Network

• (Don’t confuse with NAS – network attached storage)

• A network that provides block-level access to data over

a network and it appears to machines the same as local

storage

• SAN often uses fibrechannel (fibre optics) but can also

be over Ethernet
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NAS – network attached storage

• Like a hard-drive you plug into the Ethernet but serves

files (not disk blocks) usually by SMBFS (windows

sharing), NFS, or similar

• NAS: appears to machine as a fileserver, SAN appears

as a disk
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Network Storage Concerns

• QoS – quality of service. Limit bandwidth or latency so

one user can’t overly impact the rest

• Deduplication
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Cluster Storage

• Client-server vs Distributed

• Multiple servers?

• Distributed metadata – metadata spread out, not on one

server

• Striping data across servers.

• Failover – if network splits, can you keep writing to files

• Disconnected mode.
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Non-Distributed Network Filesystems

• NFS, SMBFS, Netware
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Distributed Filesystem Architectures

From A Taxonomy and Survey on Distributed File Systems

Can be any combination of the following

• Client Server – like NFS

• Cluster Based – single master with chunk servers

• Symmetric – peer to peer, all machines host some data

with key-based lookup

• Asymmetric – separate metadata servers

• Parallel – data striped across multiple servers
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Stateless

Can you reboot server w/o client noticing? Lower

overhead if server stateless because the server doesn’t

have to track every open file in the system

18



Synchronization/File Locking

• Multiple users writing to same file?

• Always synchronous?

• Same problems with consistency that you have with

caches/memory
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Consistency and Replication

• Checksums to validate the data

• Caching – if you cache state of filesystem locally, how

do you notice if other nodes have updated a file?
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Failure Modes
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Security
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Distributed Filesystems

• Follow a network protocol, do not share block level

access to disk

• Transparency is important. User doesn’t need to know

how it works underneath.

• Ceph, GFS, GlusterFS, Lustre, PVFS
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Lustre

• “Linux Cluster”

• Complex ownership history

• Old article: http://lwn.net/Articles/63536/

• Used by many of the top 500 computers

As of 2020, 77 of top 100 (rest IBM Spectrum scale)

Frontier has 700TB 5GB/s Lustre filesystem

• Can handle tens of thousands of clients, tens of petabytes

of data across hundreds of servers, and TB/s of I/O.

• One or more metadata servers: keep track of what files
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exist, metadata, etc, locking, can load balance.

• One or more object storage servers

Boxes of bits accessed by unique tag

• File can be “striped” across multiple storage servers and

stream the file data in parallel

• Failure recovery. If node crashes, other nodes remember

what it missed while down and help it recover to the

proper state

• Distributed Locking

• Fast networking. Use RDMA when available.
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Big Data Tools

• There are various

• Hadoop was one of the more popular
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Hadoop

• A distributed filesystem (HDFS)

• A way to run map-reduce jobs
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Hadoop

• Apache

• Distributed Processing and Distributed Storage on

commodity clusters

• Java based

• Data spread throughout nodes

Large data sets split up and spread throughout the

cluster

• Unlike traditional HPC clusters, code sent *to the nodes*

that have data of interest, rather than taking data over
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network to running code.

• HADOOP common – libraries

• HADOOP YARN – thread scheduling

• Hadoop Distributed File System – HDFS

• Hadoop MapReduce – processing algorithm

• Originally developed at Yahoo by Cutting and Cafarella.

Named after toy elephant.

• Many users. As of 2012 Facebook had 100PB of data,

said it grew at 0.5PB/day
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Hadoop Distributed Filesystem

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

• Keeps working in face of hardware failures

• Streaming data access – optimize for bandwidth, not

latency

Relaxes some POSIX assumptions

• Large data sizes – optimized for files of gigabytes to

terabytes

• Write-once-read-many – assumption is the data isn’t

being actively written.
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• “Moving computation easier than moving data”

• blocksize and replication factor per-file

• Rack-aware filesystem

• “location awareness” Tries to spread code out multiple

copies distributed physically

• Data spread throughout nodes. Default replication value

of 3, duplicated three times, twice on same rack and

once on different

• Namenode plus cluster of datanodes

• Namenode tracks filenames and locations, keeps entire

map in memory
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• Datanode stores data. Uses local computer’s underlying

filesystem. Just blocks of data, makes directories as

appropriate but doesn’t necessarily have any relationship

to the files as seen from within HDFS.

• Communication is over TCP
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HDFS Fault Handling

• Datanodes send heartbeats to namenode. When

datanodes go missing, marked as dead, no new I/O

sent to them. If any files fall below replication level they

can be replicated on remaining nodes

• Rebalancing – if disk availability changes files might be

moved around

• Integrity – checksums on files to detect corruption

• Namenode is a single point of failure. Keeps the edit log

and fsimage, only syncs at startup
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Data Organization

• Data broken up into chunks, default 64MB

• Creating a file does not necessarily allocate a chunk; it is

cached locally and only sent out once enough data has

accumulated to fill a block

• Replication pipeline: once file created starts being sent

in smaller chunks (4kb) and it gets forwarded 1 to 2 to

3 in a pipeline until file in all places.

• Deleting a file does not delete right away, moved to

/trash After configurable time gets deleted from trash
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and the blocks are marked as free. It can take a while

for this to all happen, deletes do not free up space

immediately.

• Not a full POSIX filesystem. Writes are slow, and you

can’t write to an existing file.
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Map Reduce

• Originally popularized by Google, but not really used by

them anymore (after 2014)

Jeffrey Dean, Sanjay Ghemawat (2004) MapReduce:

Simplified Data Processing on Large Clusters, Google.

• For processing large data sets in parallel on a cluster

• Similar to MPI reduce and scatter operations

• Map() – filters and sorts data into key/value pairs

Stateless, can run in parallel

can contain Combiner() – combines duplicates?
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• Reduce() – the various worker nodes process each group

in parallel.

Shuffle() – redistribute data so all common data on same

node

• Can do with single processor systems, but not any faster

typically. Shines on parallel systems
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Map Reduce Example

The quick brown fox jumped over the lazy dog.

MAP split by key (in this case, number of letters)

3: [the, fox, the, dog]

4: [over, lazy]

5: [quick, brown]

6: [jumped]

REDUCE each thread/node gets one of these. Reduce

might simply count.

38



3: 4

4: 2

5: 2

6: 1
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Another Map Reduce Example: Hello World

This is the example they like to use.

Map: key is the word

To be or not to be, that is the question.

to: [1, 1]

be: [1, 1]

or: [1]

not: [1]

that: [1]

is: [1]
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the: [1]

question: [1]

Reduce:

to: 2

be: 2

or: 1

not: 1

that: 1

is: 1

the: 1

question: 1
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Real world friends example

• http://stevekrenzel.com/finding-friends-with-mapreduce

• https://www.tutorialspoint.com/hadoop/hadoop_

mapreduce.htm
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Why would you do things like this?

• You can see how this comes out of search research

• Have terrabytes of spidered websites you want to do a

text search on? (Maybe HPC?)

• Having one thread read all terabytes over the network to

central location and searching, take forever

• Instead, data spread across millions of machines

• Send code that first does a map to find out how many

times HPC occurs on each file

• Then reduce down to MAX and find out which are most
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relevant
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Submitting a Job

• Job:

Specify input and output on filesystem

The jar file (java class) of the map and reduce functions

Job configuration

• Hadoop client sends this to the scheduler
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Scheduling

• Each location of system known. Try to run code on

same system as data for locality, If not possible, run on

one nearby.

• Small cluster has single master node, and multiple worker

nodes.

• Hardware does not have to be fault tolerant; if a

map/reduce fails it is simply retried again (on another

machine)

• You can add/remove hardware at any time
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Hadoop Update

Can set up Hadoop on single machine, even the name and

data servers. Just download big chunk of Java, have Java

and ssh installed.
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Data Warehouse

• Enterprise Data Warehouse (EDW)

• Business gather data

• ETL: Extract, Transform, Load
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Other Big Data codebases

• Google BigQuery

• Apache Spark

• Apache Storm
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Google Big Query

• “serverless data warehouse”

• Petabytes of data

• “Platform as a service”

• SQL, Machine learning

• Import data as CSV, JSON, etc

• Use Google Dremel (for interactive querying of large

databases)
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Apache Spark

• Interface for programming clusters with data parallelism

and Fault Tolerance (made at Berkeley)

• Resilient Distributed Datasets (RDD), read only multiset

of data distributed over large cluster, fault tolerant

• Dataset API

• Replacement for Map Reduce / Hadoop, latency several

orders of magnitude better

• Iterative algorithm can repeatedly visit

• Good for machine learning workloads
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• Has a cluster manager

◦ Native Spark

◦ Hadoop Yarn

◦ Apache Mesos

◦ Kubertenes

• Uses distributed storage

◦ Alluxio

◦ HDFS

◦ Casandra

◦ Amazon S3

◦ Openstack
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◦ Kudu

◦ ?
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More Apache Spark

• “HPC is dying and MPI is Killing it” article (2015)

• Java / Scala / Python / R

• Two components

◦ Driver, converts code to multiple tasks

◦ Executor: runs on nodes

• Originally ran on Hadoop Yarn, can also now via

Kubertenes
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Apache Spark – RDDs

• Resilient Distributed Dataset (RDD)

• Can be text, SQL, NoSQL, amazon s3 bucket

• Fault-tolerant, immutable (can’t change) distributed set

of objects, divided into logical partitions

• Creation/Transform/Act:

◦ Create from file or bucket and parallelize with a

command

◦ Run a transform on it (sort of like map)

Doesn’t update current RDD, but creates new one
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◦ Run an action on it. Count, first, max, reduce, collect
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Apache Spark Example

• Install it

• Run spark-shell

• Run spark-submit
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Apache Storm

• Uses clojure (Lisp/Java)

• Distributed Stream Processing

• Distributed Process Stream Data

• Pass it Directed Acyclic Graph (DAG), “spouts” and

“bolts” at vertices, edges are streams

• Master nodes execute daemon, Numbys

• Worker nodes
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Apache Drill

• Clone of google dremel
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Apache Impala

• Massively Parallel SQL query engine

• ?
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Facebook Presto

• ?
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