ECE 574 — Cluster Computing
Lecture 21

Vince Weaver
https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

17 April 2025

https://web.eece.maine.edu/~vweaver

Announcements

e Second Midterm will be Tuesday the 22nd (Tuesday)
Cumulative, though concentrating on recent material
e Project Status Report due today

Midterm Preview

e Can have 1 page of notes (1 side, 8.5"x11")
e Cumulative, but concentrating on stuff since last exam
e Performance, Speedup, Parallel efficiency, Scaling
e Shared Memory vs Distributed Systems
e Tradeoffs. Given code and hardware, would you use
o MPI — distributed systems, large problems
o OpenMP — shared memory, fit on one node / CPU
o CUDA — when you have an NVIDIA gpu

o OpenCL — when you have a non-NVIDIA gpu

-y 2

o pthreads — would you ever use if you didn't have to?
e OpenMP: dynamic vs static scheduling
e MPI, especially its limitations
e GPGPU/CUDA/OpenCL: read code, know the tradeoffs
(overhead of copying memory around)
e BigData: sizes involved, distributed filesystems
e Reliability. Causes of errors. Tradeoffs of Checkpointing

Traditional Ways to manage Data

Databases / RDBMs

e Machines that store large amounts of data, often
optimized for fast retrieval

e Databases / Relational Database Management System

e Relational databases: store rows of data, with a key.
Each field has attribute.
Item, Name, Price, Color, Rating

e Rows and columns, think of it sort of like a big
spreadsheet

SQL (structured query language)

e Standard for querying relational database (this was a
past “hot” computing topic)
e SELECT x
FROM Book
WHERE price > 100.00
ORDER BY title;

e Consistency?

SQL Challenges

e Can have parallel and distributed databases too. |It's
more difficult with SQL

o Replication — task runs, making sure all the various
copies are kept in sync

o Duplication — there is a master, and all the others are

copies of the master. Users may only change master
e Main memory database — machines with 100TB of RAM?

NoSQL Databases

e Scale-out architecture
Can increase performance by adding nodes (rather than
by upgrading single machine)

e Can store unstructured data (json, binary, text, sparse)
Doesn't have to map to rows

e Can spread out on other machines, into cloud

Cluster Filesystem

e Filesystem shared by multiple machines/nodes
e Can be centralized or distributed

Shared-disk Filesystem

e Shared-disk filesystem — shares disk at block level

o SGI CXFS
IBM GPFS
Oracle Cluster Filesystem (OCFS)
RedHat GFS
Many Others

e RedHat GFS2
Distributed Lock Manager

10

DAS — Direct Attached Storage

e typically how you hookup a hard-drive

e No network involved

e Relative low latency, but not distributed.

e Can be used as cache

e Can be exported for use as part of distributed filesystems

/Y 11

SAN — Storage Area Network

e (Don't confuse with NAS — network attached storage)

e A network that provides block-level access to data over
a network and i1t appears to machines the same as local
storage

e SAN often uses fibrechannel (fibre optics) but can also
be over Ethernet

/Y 12

NAS — network attached storage

e Like a hard-drive you plug into the Ethernet but serves
files (not disk blocks) usually by SMBFS (windows
sharing), NFS, or similar

e NAS: appears to machine as a fileserver, SAN appears
as a disk

-y 13

Network Storage Concerns

e QoS — quality of service. Limit bandwidth or latency so
one user can't overly impact the rest
e Deduplication

-y 14

Cluster Storage

e Client-server vs Distributed

e Multiple servers?

e Distributed metadata — metadata spread out, not on one
server

e Striping data across servers.

e Failover — if network splits, can you keep writing to files

e Disconnected mode.

-y 15

Non-Distributed Network Filesystems

e NFS, SMBFS, Netware

16

Distributed Filesystem Architectures

From A Taxonomy and Survey on Distributed File Systems

Can be any combination of the following

e Client Server — like NFS

e Cluster Based — single master with chunk servers

e Symmetric — peer to peer, all machines host some data
with key-based lookup

e Asymmetric — separate metadata servers

e Parallel — data striped across multiple servers

-y 17

Stateless

Can you reboot server w/o client noticing? Lower
overhead if server stateless because the server doesn't
have to track every open file in the system

-y 18

Synchronization /File Locking

e Multiple users writing to same file?
e Always synchronous?

e Same problems with consistency that you have with
caches/memory

/Y 19

Consistency and Replication

e Checksums to validate the data

e Caching — if you cache state of filesystem locally, how
do you notice if other nodes have updated a file?

-y 20

Failure Modes

21

Security

Distributed Filesystems

e Follow a network protocol, do not share block level
access to disk

e Iransparency is important. User doesn't need to know
how it works underneath.

e Ceph, GFS, GlusterFS, Lustre, PVFS

-y 23

Lustre

e “Linux Cluster”

e Complex ownership history

e Old article: http://lwn.net/Articles/63536/

e Used by many of the top 500 computers
As of 2020, 77 of top 100 (rest IBM Spectrum scale)
Frontier has 700TB 5GB/s Lustre filesystem

e Can handle tens of thousands of clients, tens of petabytes
of data across hundreds of servers, and TB/s of |1/0.

e One or more metadata servers: keep track of what files

-y o4

h

exist, metadata, etc, locking, can load balance.

e One or more object storage servers
Boxes of bits accessed by unique tag

e File can be “striped” across multiple storage servers and
stream the file data in parallel

e Failure recovery. If node crashes, other nodes remember
what it missed while down and help it recover to the

droper state

e Distributed Locking

e [ast networking. Use RDMA when available.

-y 25

Big Data Tools

e [here are various
e Hadoop was one of the more popular

26

Hadoop

e A distributed filesystem (HDFS)
e A way to run map-reduce jobs

27

Hadoop

e Apache
e Distributed Processing and Distributed Storage on
commodity clusters

° |

ava based

e Data spread throughout nodes
Large data sets split up and spread throughout the

C

uster

e Unlike traditional HPC clusters, code sent *to the nodes*

t

nat have data of interest, rather than taking data over

-y 28

network to running code.

A
A

dd

DOO
DOO

oop

aC

P common — libraries
? YARN — thread scheduling

Distributed File System — HDFS

oop MapReduce — processing algorithm

e Originally developed at Yahoo by Cutting and Cafarella.
Named after toy elephant.
e Many users. As of 2012 Facebook had 100PB of data,
said it grew at 0.5PB/day

29

Hadoop Distributed Filesystem

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

e Keeps working in face of hardware failures

e Streaming data access — optimize for bandwidth, not

atency

Relaxes some POSIX assumptions

e Large data sizes — optimized for files of gigabytes to
terabytes

e \Write-once-read-many — assumption is the data isn't
being actively written.

-y 30

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

e "Moving computation easier than moving data”

e blocksize and replication factor per-file

e Rack-aware filesystem

e ‘location awareness” Tries to spread code out multiple
copies distributed physically

e Data spread throughout nodes. Default replication value
of 3, duplicated three times, twice on same rack and
once on different

e Namenode plus cluster of datanodes

e Namenode tracks filenames and locations, keeps entire
map In memory

-y 31

e Datanode stores data. Uses local computer’'s underlying
fillesystem. Just blocks of data, makes directories as
appropriate but doesn’t necessarily have any relationship
to the files as seen from within HDFS.

e Communication is over TCP

-y 32

HDFS Fault Handling

e Datanodes send heartbeats to namenode. When
datanodes go missing, marked as dead, no new 1/O
sent to them. If any files fall below replication level they
can be replicated on remaining nodes

e Rebalancing — if disk availability changes files might be
moved around

e Integrity — checksums on files to detect corruption

e Namenode is a single point of failure. Keeps the edit log
and fsimage, only syncs at startup

/Y 33

Data Organization

e Data broken up into chunks, default 64MB

e Creating a file does not necessarily allocate a chunk; it is
cached locally and only sent out once enough data has
accumulated to fill a block

e Replication pipeline: once file created starts being sent
in smaller chunks (4kb) and it gets forwarded 1 to 2 to
3 in a pipeline until file in all places.

e Deleting a file does not delete right away, moved to
/trash After configurable time gets deleted from trash

-y 34

and the blocks are marked as free. |t can take a while
for this to all happen, deletes do not free up space
immediately.

e Not a full POSIX filesystem. Writes are slow, and you
can't write to an existing file.

-y 35

Map Reduce

e Originally popularized by Google, but not really used by
them anymore (after 2014)
Jeffrey Dean, Sanjay Ghemawat (2004) MapReduce:
Simplified Data Processing on Large Clusters, Google.

e For processing large data sets in parallel on a cluster

e Similar to MPI reduce and scatter operations

e Map() — filters and sorts data into key/value pairs
Stateless, can run in parallel
can contain Combiner() — combines duplicates?

-y 36

e Reduce() — the various worker nodes process each group
in parallel.
Shuffle() — redistribute data so all common data on same
node

e Can do with single processor systems, but not any faster
typically. Shines on parallel systems

-y 37

Map Reduce Example

The quick brown fox jumped over the lazy dog.
MAP split by key (in this case, number of letters)

the, fox, the, dog]
over, lazy]
[quick, brown]

S 01 & W

[jumped]

REDUCE each thread/node gets one of these. Reduce
might simply count.

/Y 38

< AN AN

M < O ©

Another Map Reduce Example: Hello World

This is the example they like to use.
Map: key is the word

To be or not to be, that 1s the question.

to: [1, 1]
be: [1, 1]
or: [1]
not: [1]
that: [1]
is: [1]

-y 40

the: [1]
question: [1]

Reduce:

to: 2

be: 2

or: 1

not: 1
that: 1

is: 1

the: 1
question: 1

41

Real world friends example

e http://stevekrenzel.com/finding-friends-with-me
e https://www.tutorialspoint.com/hadoop/hadoop_
mapreduce.htm

VA A 4 1

http://stevekrenzel.com/finding-friends-with-mapreduce
https://www.tutorialspoint.com/hadoop/hadoop_mapreduce.htm
https://www.tutorialspoint.com/hadoop/hadoop_mapreduce.htm

Why would you do things like this?

e You can see how this comes out of search research

e Have terrabytes of spidered websites you want to do a
text search on? (Maybe HPC?)

e Having one thread read all terabytes over the network to
central location and searching, take forever

e Instead, data spread across millions of machines

e Send code that first does a map to find out how many
times HPC occurs on each file

e Then reduce down to MAX and find out which are most

-y s

relevant

Submitting a Job

e Job:
Specify input and output on filesystem
The jar file (java class) of the map and reduce functions
Job configuration

e Hadoop client sends this to the scheduler

/Y 45

Scheduling

e Each location of system known. Try to run code on
same system as data for locality, If not possible, run on
one nearby.

e Small cluster has single master node, and multiple worker
nodes.

e Hardware does not have to be fault tolerant: if a
map/reduce fails it is simply retried again (on another
machine)

e You can add/remove hardware at any time

VA A 4 16

Hadoop Update

Can set up Hadoop on single machine, even the name and
data servers. Just download big chunk of Java, have Java
and ssh installed.

/Y 47

Data Warehouse

e Enterprise Data Warehouse (EDW)

e Business gather data
e ETL: Extract, Transform, Load

48

Other Big Data codebases

e Google BigQuery
e Apache Spark
e Apache Storm

49

Google Big Query

e “serverless data warehouse”

e Petabytes of data

e "Platform as a service”

e SQL, Machine learning

e Import data as CSV, JSON, etc

e Use Google Dremel (for interactive querying of large
databases)

-y 50

Apache Spark

e Interface for programming clusters with data parallelism
and Fault Tolerance (made at Berkeley)

e Resilient Distributed Datasets (RDD), read only multiset
of data distributed over large cluster, fault tolerant

e Dataset API

e Replacement for Map Reduce / Hadoop, latency several
orders of magnitude better

e lterative algorithm can repeatedly visit

e Good for machine learning workloads

-y 51

e Has a cluster manager
o Native Spark
o Hadoop Yarn
o Apache Mesos
o Kubertenes
e Uses distributed storage
o Alluxio
o HDFS
o Casandra
o Amazon S3
o Openstack

52

o Kudu

More Apache Spark

e "HPC is dying and MPI is Killing it" article (2015)

e Java / Scala / Python / R

e [wo components
o Driver, converts code to multiple tasks
o Executor: runs on nodes

e Originally ran on Hadoop Yarn, can also now via
Kubertenes

-y 54

Apache Spark — RDDs

e Resilient Distributed Dataset (RDD)
e Can be text, SQL, NoSQL, amazon s3 bucket
e Fault-tolerant, immutable (can’t change) distributed set
of objects, divided into logical partitions
e Creation/Transform /Act:
o Create from file or bucket and parallelize with a
command
o Run a transform on it (sort of like map)
Doesn't update current RDD, but creates new one

/Y 55

o Run an action on it. Count, first, max, reduce, collect

-y 56

Apache Spark Example

nstall it
Run spark-shell

Run spark-submit

57

Apache Storm

Uses clojure (Lisp/Java)

Distributed Stream Processing

Distributed Process Stream Data

Pass it Directed Acyclic Graph (DAG), “spouts” and
“bolts” at vertices, edges are streams

e Master nodes execute daemon, Numbys

e Worker nodes

-y 58

Apache Drill

e Clone of google dremel

59

Apache Impala

e Massively Parallel SQL query engine
° 7

60

Facebook Presto

61

