
ECE 574 – Cluster Computing
Lecture 21

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

17 April 2025

https://web.eece.maine.edu/~vweaver


Announcements

• Second Midterm will be Tuesday the 22nd (Tuesday)

Cumulative, though concentrating on recent material

• Project Status Report due today

1



Midterm Preview

• Can have 1 page of notes (1 side, 8.5”x11”)

• Cumulative, but concentrating on stuff since last exam

• Performance, Speedup, Parallel efficiency, Scaling

• Shared Memory vs Distributed Systems

• Tradeoffs. Given code and hardware, would you use

◦ MPI – distributed systems, large problems

◦ OpenMP – shared memory, fit on one node / CPU

◦ CUDA – when you have an NVIDIA gpu

◦ OpenCL – when you have a non-NVIDIA gpu

2



◦ pthreads – would you ever use if you didn’t have to?

• OpenMP: dynamic vs static scheduling

• MPI, especially its limitations

• GPGPU/CUDA/OpenCL: read code, know the tradeoffs

(overhead of copying memory around)

• BigData: sizes involved, distributed filesystems

• Reliability. Causes of errors. Tradeoffs of Checkpointing

3



Traditional Ways to manage Data

4



Databases / RDBMs

• Machines that store large amounts of data, often

optimized for fast retrieval

• Databases / Relational Database Management System

• Relational databases: store rows of data, with a key.

Each field has attribute.

Item, Name, Price, Color, Rating

• Rows and columns, think of it sort of like a big

spreadsheet

5



SQL (structured query language)

• Standard for querying relational database (this was a

past “hot” computing topic)

• SELECT *

FROM Book

WHERE price > 100.00

ORDER BY title;

• Consistency?

6



SQL Challenges

• Can have parallel and distributed databases too. It’s

more difficult with SQL

◦ Replication – task runs, making sure all the various

copies are kept in sync

◦ Duplication – there is a master, and all the others are

copies of the master. Users may only change master

• Main memory database – machines with 100TB of RAM?

7



NoSQL Databases

• Scale-out architecture

Can increase performance by adding nodes (rather than

by upgrading single machine)

• Can store unstructured data (json, binary, text, sparse)

Doesn’t have to map to rows

• Can spread out on other machines, into cloud

8



Cluster Filesystem

• Filesystem shared by multiple machines/nodes

• Can be centralized or distributed

9



Shared-disk Filesystem

• Shared-disk filesystem – shares disk at block level

• SGI CXFS

IBM GPFS

Oracle Cluster Filesystem (OCFS)

RedHat GFS

Many Others

• RedHat GFS2

Distributed Lock Manager

10



DAS – Direct Attached Storage

• typically how you hookup a hard-drive

• No network involved

• Relative low latency, but not distributed.

• Can be used as cache

• Can be exported for use as part of distributed filesystems

11



SAN – Storage Area Network

• (Don’t confuse with NAS – network attached storage)

• A network that provides block-level access to data over

a network and it appears to machines the same as local

storage

• SAN often uses fibrechannel (fibre optics) but can also

be over Ethernet

12



NAS – network attached storage

• Like a hard-drive you plug into the Ethernet but serves

files (not disk blocks) usually by SMBFS (windows

sharing), NFS, or similar

• NAS: appears to machine as a fileserver, SAN appears

as a disk

13



Network Storage Concerns

• QoS – quality of service. Limit bandwidth or latency so

one user can’t overly impact the rest

• Deduplication

14



Cluster Storage

• Client-server vs Distributed

• Multiple servers?

• Distributed metadata – metadata spread out, not on one

server

• Striping data across servers.

• Failover – if network splits, can you keep writing to files

• Disconnected mode.

15



Non-Distributed Network Filesystems

• NFS, SMBFS, Netware

16



Distributed Filesystem Architectures

From A Taxonomy and Survey on Distributed File Systems

Can be any combination of the following

• Client Server – like NFS

• Cluster Based – single master with chunk servers

• Symmetric – peer to peer, all machines host some data

with key-based lookup

• Asymmetric – separate metadata servers

• Parallel – data striped across multiple servers

17



Stateless

Can you reboot server w/o client noticing? Lower

overhead if server stateless because the server doesn’t

have to track every open file in the system

18



Synchronization/File Locking

• Multiple users writing to same file?

• Always synchronous?

• Same problems with consistency that you have with

caches/memory

19



Consistency and Replication

• Checksums to validate the data

• Caching – if you cache state of filesystem locally, how

do you notice if other nodes have updated a file?

20



Failure Modes

21



Security

22



Distributed Filesystems

• Follow a network protocol, do not share block level

access to disk

• Transparency is important. User doesn’t need to know

how it works underneath.

• Ceph, GFS, GlusterFS, Lustre, PVFS

23



Lustre

• “Linux Cluster”

• Complex ownership history

• Old article: http://lwn.net/Articles/63536/

• Used by many of the top 500 computers

As of 2020, 77 of top 100 (rest IBM Spectrum scale)

Frontier has 700TB 5GB/s Lustre filesystem

• Can handle tens of thousands of clients, tens of petabytes

of data across hundreds of servers, and TB/s of I/O.

• One or more metadata servers: keep track of what files

24

h


exist, metadata, etc, locking, can load balance.

• One or more object storage servers

Boxes of bits accessed by unique tag

• File can be “striped” across multiple storage servers and

stream the file data in parallel

• Failure recovery. If node crashes, other nodes remember

what it missed while down and help it recover to the

proper state

• Distributed Locking

• Fast networking. Use RDMA when available.

25



Big Data Tools

• There are various

• Hadoop was one of the more popular

26



Hadoop

• A distributed filesystem (HDFS)

• A way to run map-reduce jobs

27



Hadoop

• Apache

• Distributed Processing and Distributed Storage on

commodity clusters

• Java based

• Data spread throughout nodes

Large data sets split up and spread throughout the

cluster

• Unlike traditional HPC clusters, code sent *to the nodes*

that have data of interest, rather than taking data over

28



network to running code.

• HADOOP common – libraries

• HADOOP YARN – thread scheduling

• Hadoop Distributed File System – HDFS

• Hadoop MapReduce – processing algorithm

• Originally developed at Yahoo by Cutting and Cafarella.

Named after toy elephant.

• Many users. As of 2012 Facebook had 100PB of data,

said it grew at 0.5PB/day

29



Hadoop Distributed Filesystem

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

• Keeps working in face of hardware failures

• Streaming data access – optimize for bandwidth, not

latency

Relaxes some POSIX assumptions

• Large data sizes – optimized for files of gigabytes to

terabytes

• Write-once-read-many – assumption is the data isn’t

being actively written.

30

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html


• “Moving computation easier than moving data”

• blocksize and replication factor per-file

• Rack-aware filesystem

• “location awareness” Tries to spread code out multiple

copies distributed physically

• Data spread throughout nodes. Default replication value

of 3, duplicated three times, twice on same rack and

once on different

• Namenode plus cluster of datanodes

• Namenode tracks filenames and locations, keeps entire

map in memory

31



• Datanode stores data. Uses local computer’s underlying

filesystem. Just blocks of data, makes directories as

appropriate but doesn’t necessarily have any relationship

to the files as seen from within HDFS.

• Communication is over TCP

32



HDFS Fault Handling

• Datanodes send heartbeats to namenode. When

datanodes go missing, marked as dead, no new I/O

sent to them. If any files fall below replication level they

can be replicated on remaining nodes

• Rebalancing – if disk availability changes files might be

moved around

• Integrity – checksums on files to detect corruption

• Namenode is a single point of failure. Keeps the edit log

and fsimage, only syncs at startup

33



Data Organization

• Data broken up into chunks, default 64MB

• Creating a file does not necessarily allocate a chunk; it is

cached locally and only sent out once enough data has

accumulated to fill a block

• Replication pipeline: once file created starts being sent

in smaller chunks (4kb) and it gets forwarded 1 to 2 to

3 in a pipeline until file in all places.

• Deleting a file does not delete right away, moved to

/trash After configurable time gets deleted from trash

34



and the blocks are marked as free. It can take a while

for this to all happen, deletes do not free up space

immediately.

• Not a full POSIX filesystem. Writes are slow, and you

can’t write to an existing file.

35



Map Reduce

• Originally popularized by Google, but not really used by

them anymore (after 2014)

Jeffrey Dean, Sanjay Ghemawat (2004) MapReduce:

Simplified Data Processing on Large Clusters, Google.

• For processing large data sets in parallel on a cluster

• Similar to MPI reduce and scatter operations

• Map() – filters and sorts data into key/value pairs

Stateless, can run in parallel

can contain Combiner() – combines duplicates?

36



• Reduce() – the various worker nodes process each group

in parallel.

Shuffle() – redistribute data so all common data on same

node

• Can do with single processor systems, but not any faster

typically. Shines on parallel systems

37



Map Reduce Example

The quick brown fox jumped over the lazy dog.

MAP split by key (in this case, number of letters)

3: [the, fox, the, dog]

4: [over, lazy]

5: [quick, brown]

6: [jumped]

REDUCE each thread/node gets one of these. Reduce

might simply count.

38



3: 4

4: 2

5: 2

6: 1

39



Another Map Reduce Example: Hello World

This is the example they like to use.

Map: key is the word

To be or not to be, that is the question.

to: [1, 1]

be: [1, 1]

or: [1]

not: [1]

that: [1]

is: [1]

40



the: [1]

question: [1]

Reduce:

to: 2

be: 2

or: 1

not: 1

that: 1

is: 1

the: 1

question: 1

41



Real world friends example

• http://stevekrenzel.com/finding-friends-with-mapreduce

• https://www.tutorialspoint.com/hadoop/hadoop_

mapreduce.htm

42

http://stevekrenzel.com/finding-friends-with-mapreduce
https://www.tutorialspoint.com/hadoop/hadoop_mapreduce.htm
https://www.tutorialspoint.com/hadoop/hadoop_mapreduce.htm


Why would you do things like this?

• You can see how this comes out of search research

• Have terrabytes of spidered websites you want to do a

text search on? (Maybe HPC?)

• Having one thread read all terabytes over the network to

central location and searching, take forever

• Instead, data spread across millions of machines

• Send code that first does a map to find out how many

times HPC occurs on each file

• Then reduce down to MAX and find out which are most

43



relevant

44



Submitting a Job

• Job:

Specify input and output on filesystem

The jar file (java class) of the map and reduce functions

Job configuration

• Hadoop client sends this to the scheduler

45



Scheduling

• Each location of system known. Try to run code on

same system as data for locality, If not possible, run on

one nearby.

• Small cluster has single master node, and multiple worker

nodes.

• Hardware does not have to be fault tolerant; if a

map/reduce fails it is simply retried again (on another

machine)

• You can add/remove hardware at any time

46



Hadoop Update

Can set up Hadoop on single machine, even the name and

data servers. Just download big chunk of Java, have Java

and ssh installed.

47



Data Warehouse

• Enterprise Data Warehouse (EDW)

• Business gather data

• ETL: Extract, Transform, Load

48



Other Big Data codebases

• Google BigQuery

• Apache Spark

• Apache Storm

49



Google Big Query

• “serverless data warehouse”

• Petabytes of data

• “Platform as a service”

• SQL, Machine learning

• Import data as CSV, JSON, etc

• Use Google Dremel (for interactive querying of large

databases)

50



Apache Spark

• Interface for programming clusters with data parallelism

and Fault Tolerance (made at Berkeley)

• Resilient Distributed Datasets (RDD), read only multiset

of data distributed over large cluster, fault tolerant

• Dataset API

• Replacement for Map Reduce / Hadoop, latency several

orders of magnitude better

• Iterative algorithm can repeatedly visit

• Good for machine learning workloads

51



• Has a cluster manager

◦ Native Spark

◦ Hadoop Yarn

◦ Apache Mesos

◦ Kubertenes

• Uses distributed storage

◦ Alluxio

◦ HDFS

◦ Casandra

◦ Amazon S3

◦ Openstack

52



◦ Kudu

◦ ?

53



More Apache Spark

• “HPC is dying and MPI is Killing it” article (2015)

• Java / Scala / Python / R

• Two components

◦ Driver, converts code to multiple tasks

◦ Executor: runs on nodes

• Originally ran on Hadoop Yarn, can also now via

Kubertenes

54



Apache Spark – RDDs

• Resilient Distributed Dataset (RDD)

• Can be text, SQL, NoSQL, amazon s3 bucket

• Fault-tolerant, immutable (can’t change) distributed set

of objects, divided into logical partitions

• Creation/Transform/Act:

◦ Create from file or bucket and parallelize with a

command

◦ Run a transform on it (sort of like map)

Doesn’t update current RDD, but creates new one

55



◦ Run an action on it. Count, first, max, reduce, collect

56



Apache Spark Example

• Install it

• Run spark-shell

• Run spark-submit

57



Apache Storm

• Uses clojure (Lisp/Java)

• Distributed Stream Processing

• Distributed Process Stream Data

• Pass it Directed Acyclic Graph (DAG), “spouts” and

“bolts” at vertices, edges are streams

• Master nodes execute daemon, Numbys

• Worker nodes

58



Apache Drill

• Clone of google dremel

59



Apache Impala

• Massively Parallel SQL query engine

• ?

60



Facebook Presto

• ?

61


