
ECE 598 – Advanced Operating
Systems
Lecture 2

Vince Weaver

http://www.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

15 January 2015

Announcements

• Update on room situation

(shouldn’t be locked anymore, but not much chance of

getting a better room)

1

Building Linux by Hand

• Check out with git or download tarball:

git clone git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

http://www.kernel.org/pub/linux/kernel/v3.x/

• Configure.

make config or make menuconfig

Also can copy existing .config and run make

oldconfig

• Compile.

2

make

What does make -j 8 do differently?

• Make the modules.

make modules

• sudo make modules install

• copy bzImage to boot, update boot loader

3

Building Linux Automated

• If in a distro there are other commands to building a

package.

• For example on Debian make-kpkg --initrd

--rootcmd fakeroot kernel image

• Then dpkg -i to install; easier to track

4

Overhead (i.e. why not to do it natively on
a Pi)

• Size – clean git source tree (x86) 1.8GB, compiled

with kernel, 2.5GB, compiled kernel with debug features

(x86), 12GB!!!

Tarball version with compiled kernel (ARM) 1.5GB

• Time to compile – minutes (on fast multicore x86

machine) to hours (18 hours or so on Pi)

5

Linux on the Pi

• Mainline kernel, bcm2835 tree

Missing some features

• Raspberry-pi foundation bcm2708 tree

More complete, not upstream

6

Compiling – how does it work?

• Take C-code

• Turn into assembler

• Run assembler to make object (machine language files).

Final addresses not necessarily put into place

• Run linker (which uses linker script)

• Makes some sort of executable.

7

• How do you get first compiler written? Assembly, cross-

compiler, native compiler

8

Tools

• compiler: takes code, usually (but not always) generates

assembly

• assembler: GNU Assembler as (others: tasm, nasm,

masm, etc.)

creates object files

• linker: ld

creates executable files. resolves addresses of symbols.

shared libraries.

9

Converting Assembly to Machine Language

Thankfully the assembler does this for you.

ARM32 ADD instruction – 0xe0803080 == add r3,

r0, r0, lsl #1

ADD{S}<c> <Rd>,<Rn>,<Rm>{,<shift>}
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RmRd

RnS0 0 0cond Opcode

imm5
Shift

typ
Shift Sh

Reg

0 1 0 0

10

Executable Format

• ELF (Executable and Linkable Format, Extensible

Linking Format)

Default for Linux and some other similar OSes

header, then header table describing chunks and where

they go

• Other executable formats: a.out, COFF, binary blob

11

ELF Layout

ELF Header

Text (Machine Code)

Data (Initialized Data)

Program header

Symbols

Debugging Info

....

Section header

12

ELF Description

• ELF Header includes a “magic number” saying it’s

0x7f,ELF, architecture type, OS type, etc. Also location

of program header and section header and entry point.

• Program Header, used for execution:

has info telling the OS what parts to load, how, and

where (address, permission, size, alignment)

• Program Data follows, describes data actually loaded

into memory: machine code, initialized data

13

• Other data: things like symbol names, debugging info

(DWARF), etc.

DWARF backronym = “Debugging with Attributed

Record Formats”

• Section Header, used when linking:

has info on the additional segments in code that aren’t

loaded into memory, such as debugging, symbols, etc.

14

Linux Virtual Memory Map

Operating System
Stack

Operating System

0xffff ffff

Exexcutable Info

Environment Strings

0xbfff ffff

Cmd Line Arg Strings

Executable Name

Padding

Stack

Cmd Line Arg Count

Command Line Pointers

Environment Pointers

ELF Auxiliary Vectors

Text (Executable)

0x0804 8000

Data

BSS

Heap

mmap

vdso

Null Guard Page
0x0000 0000

shared libraries

15

Program Memory Layout on Linux

• Text: the program’s raw machine code

• Data: Initialized data

• BSS: uninitialized data; on Linux this is all set to 0.

• Heap: dynamic memory. malloc() and brk(). Grows

up

• Stack: LIFO memory structure. Grows down.

16

Program Layout

• Kernel: is mapped into top of address space, for

performance reasons

• Command Line arguments, Environment, AUX vectors,

etc., available above stack

• For security reasons “ASLR” (Address Space Layout

Randomization) is often enabled. From run to run the

exact addresses of all the sections is randomized, to

make it harder for hackers to compromise your system.

17

Cross-compiling

• Building for a different architecture

• Why? ARM machines often slow

• Why not? Source tree has to be handle this. Makefile.

etc. Usually easier to compile natively

• Linux kernel tends to cross compile OK.

18

Bootloaders on ARM

• uBoot – Universal Bootloader, for ARM and under

embedded systems

• So both BIOS and bootloader like minimal OSes

19

Disk Partitions

• Way to virtually split up disk.

• DOS GPT – old partition type, in MBR. Start/stop

sectors, type

• Types: Linux, swap, DOS, etc

• GPT had 4 primary and then more secondary

• Lots of different schemes (each OS has own, Linux

supports many). UEFI more flexible, greater than 2TB

20

Booting on x86

• BIOS

• Bootloader (let’s say GRUB). Loads 512Byte bootsector

to 0x7c00

• Loads second part

• Loads final part capable of booting Linux

• Linux image, ”vmlinux” (why called that? historical,

unix, vm unix)

21

• decompressor and compressed image (zImage, bzImage,

uIMage, etc)

• When building, the kernel image is taken, stripped,

compressed. piggy ”piggyback” code put on, as well

as decompressor. Orginally floppy boot code stuck on

beginning as well.

• Different entry points. On x86 BIOS boots into 16-bit.

EFI and bootloaders can jump into 32/64

• So optionally boots in 16-bit mode. Switches to

32-bit mode. Id 64-bit, optionally switch to 64-bit

22

Decompressed kernel to 0x10 0000 (might have to move

decompress code). (above 1MB. Why? 640k) Wht

about initrd?

• Jump to startup 32 / startup 64 function

• 16-bit code handles various stuff, gets memory size from

BIOS, etc

• 32/64 relies more on boot loader. Has specification for

how registers set up, etc.

• relocates decompression code if needed. Sets up stack,

23

clears BSS¿ Decompresses.

• relocate if needed. why? randomization is one.

• Memory map. Virtual mem. First 896M of physical

mem mirrored in top of 32-bit. WHy? So kernel can

easily copy to/from. Can convert kernel virt to phys

with just subtraction. COmplicated if more than that

much RAM, have to copy around. HIGHMEM.

• space above for vmalloc

• somewhat more complicated 64-bit

24

• kernel just an ELF executable

• disk partitions, where bootloader stored, etc

25

Booting on typical ARM/uboot

• vmlinux. strip. compress. piggy / piggyback.

decompression code tacked on convert to zImage.

mkuimage converts to uimage suitable for booting with

uboot

• No bios really. Bootloader provides all info.

• Modern day Device Tree provides config info for hardware

(memory size, interrupts, what hardware is there)

26

More how setup

• Linker script

• describes sections, where they should go

27

More booting

• Initializes hardware. First part asm. Transition to C as

quickly as possible. First thing to initialize. Memory.

Then simple in/out. Enable keyboard, simple VGA, serial

console. So printk can work.

• Relocates decompression code

• Decompresses

• Parse the resulting ELF file.

28

• APply any relocations

• Jump to entry point

29

Raspberry Pi Booting

• Unusual

• Small amount of firmware on SoC

• ARM 1176 brought up inactive (in reset)

• Videocore loads first stage from ROM

• This reads bootcode.bin from fat partition on SD card

into L2 cache.

30

• This runs on videocard, enables SDRAM, then loads

start.elf

• This initializes things, the loads and boots Linux

kernel.img. (also reads some config files there first)

31

More booting

• Most other ARM devices, ARM chip runs first-stage

boot loader (often MLO) and second-stage (uboot)

• FAT partition

Why FAT? (Simple, Low-memory, Works on most

machines, In theory no patents despite MS’s best

attempts (see exfat))

The boot firmware (burned into the CPU) is smart

enough to mount a FAT partition

32

So how do we start with own OS?

• Make simple binary.

• Compile it with ARM toolchain (cross compile?)

• Replace kernel.img on your memory card.

• Boot into it!

• Easier said than done.

• What kind of setup do you have?

33

