
ECE 598 – Advanced Operating
Systems

Lecture 4

Vince Weaver

http://www.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

22 January 2015



Announcements

• Let me know if you need to borrow a Pi

1



Writing a standalone Program

• Easy in assembler

• Some Extra work in C. Why?

2



Entry Point from Bootloader

• Execution starts at 0x8000

• Loader passes a few arguments, as in a function call.

Three arguments. As per ABI in r0,r1,r2

r0=device booted from (usually 0)

r1=arm chip identifier (3138 0xc42 on bcm2835)

r2=pointer to ATAGS (arm TAGS) which contains info

from bootloader, such as memory avail, etc.

3



Building

• We’re going to use a cross-compiler to build the

homework. Then copy the result to the SD card. There

are other ways to do this (including building natively

on the pi) but those involve a lot of cable and/or card

swapping.

• Unfortunately debugging is a pain if not working.

• Would be nice if we had a fancy bootloader that allowed

dual boot, but I was unable to find a good one.

4



Blinking an LED

• On Model B, GPIO16 is connected to the ACT LED.

• On Model B+, it is GPIO47 instead

5



GPIOS

• See the peripheral reference available here:

http://www.raspberrypi.org/wp-content/uploads/2012/02/

BCM2835-ARM-Peripherals.pdf

• GPIO base at 0x20200000

• The GPFSEL registers let you enable the GPIO pins.

9 GPIOs per register (3 bits each)

GPIO16 is thus set in GPFSEL1

A value of ”1” enables it for output (what do other

6



values do?)

• The LED is hooked up to active low, so want to clear

the line to turn on (on B+ it is the opposite).

• GPSET registers used to set to 1. So to set GPIO16 to

on, set bit 16 of GPSET0 register.

• GPCLR registers used to set to 0

• Can do much fancier things. Set alternate functions

for the outputs, pullups, read values, level detect, etc.

Much like in ECE271.

7



Assembly review

• ARM has 16 registers. r0 - r15. r15 is the program

counter. r14 is the stack pointer.

• arm32 has fixed 4-byte encoding (rpi also has THUMB

but we won’t be using that).

8



Defines

The .equ assembler directive is the equivalent of a C

#define
.equ GPIO_BASE , 0x20200000

.equ GPIO_GPFSEL1 , 4

.equ GPIO_GPSET0 , 28

.equ GPIO_GPCLR0 , 40

9



Loading a Constant

You can use mov r0,#2048 to load small constants (#

indicates an immediate value). However long constants

won’t fit in the instruction coding. One way to load them

is to put = in front which tells the assembler to put the

value in a nearby area and do a PC-relative load.
ldr r0 ,= GPIO_BASE

10



Storing to a Register

There are always multiple ways to generate a constant. In

this case we want a 1 shifted left by 18. A simple way to

do this is load the value, then logical shift left it to the

right position.

The str instruction stores. In this case we have two values,

so the value pointed to is the sum of the two.
mov r1 ,#1

lsl r1 ,#18

str r1 ,[r0 ,# GPIO_GPFSEL1]

11



Delaying

A simple way to create a delay is to just have a busy loop.

Move a value in, and then decrement the counter until

it hits zero. You can use a separate cmp instruction for

the compare, but ARM allows you to put “s” on th end

of an instruction to update flags. Thus below the sub

instruction will update the zero flag after each iteration,

and the bne branch-if-not-equal will check the zero flag

and loop properly.
mov r1 ,#65536

delay_loop:

subs r1,r1 ,#1

bne delay_loop

12



Looping Forever

Once our program ends we cannot exit like you normally

would; there’s no operating system to exit to. To prevent

the program just running off the end of the address space

we have an infinite loop. ARM processors support the wfe

instruction which will put the CPU in a low-power state

while waiting for something to happen. This will use less

power (hopefully) than an empty busy loop.
finished:

wfe /* wait for event */

b finished

13



More Blinking, Now in C

C is easier to program, but has more overhead.

Other things to note:

• Need to compile with -nostartfiles as no C library is

available.

• You need to provide own C library routines. No printf,

strcpy, malloc, anything like that.

14



• There needs to be boot code to set up the stack, initialize

the BSS, etc.

15



More Blinking, Now in C

You can set up some useful #define statements to make

the code easier to follow.
#define GPIO_BASE 0x20200000UL

#define GPIO_GPFSEL1 1

#define GPIO_GPSET0 7

#define GPIO_GPCLR0 10

16



Volatile!

The volatile keyword tells the compiler that this address

points to something that might change, so should actually

be read every time a read is indicated. An optimizing

compiler otherwise might notice two reads to an address

with no intervening store and optimize away the first read!

It may also optimize all but the last store if no intervening

reads!
volatile uint32_t *gpio;

17



Setting a value

You can treat memory as an array.
gpio[GPIO_GPFSEL1] |= (1 << 18);

18



Delays

If you want to use an empty delay loop like we do in

asm you’ll have to use volatile or otherwise find ways to

keep the compiler from optimizing it away.

19



Building

• Linker script (tells linker where to put things, sets up

entry point, etc)

• Objcopy to strip off extraneous ELF header stuff.

20


