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Announcements

• Homework assigned and was due (missed lecture due to

storm)

• Trying out new classroom, Barrows 221 (TI Lab)
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Cross Compilers

• Some are having difficulty getting this working.

• On ARM Linux, no need at all. Problem is copying to a

memory key.

• On x86 Linux can install. Either grab the .tar.gz and

setup, or if on Ubuntu might be as simple as apt-get

install gcc-arm-none-eabi. On Debian you will

need to add deb http://www.emdebian.org/debian

unstable main to your /etc/apt/sources.list first.

2



On 64-bit machines you may also need to install a 32-bit

compatibility library

• On OSX people seem to mostly successfully getting

Yagato working following the instructions given.

• Windows is a problem. Directions inside a .bz2 file and

involves installing MINGWIN first plus then compiling a

bunch of files.

• Updating your PATH is an issue. Can get around this

by just hardcoding the path in your Makefile CROSS

variable as described in HW handout.
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Serial Ports

• Want easy I/O.

• Blinky LEDs not enough. Could have O/S communicate

by Morse code on the LED (were patches for Linux to

do this at one point)
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Serial Ports

• Minimum TX, RX, Ground. Older systems 9pin/25pin

• Used for many things (modems, terminals, mouse, GPS,

etc)

• RS-232

• Interface usually set of IO-Address and Interrupt

(sometimes DMA too)

• ttyS0, ttyS1 and similar (Linux) COM1, COM2 Windows
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Serial Port FIFO

• Internal First-in-First-Out structures

• 1 byte (older) to 16 bytes

• Can generate Interrupt. Have to handle in time or else

data lost

• Why timeout? Send 1-byte typing, stall if not 15 more.

• Why FIFOs small? flow control. A byte saying to stall

sent, if large FIFO a long time before it actually gets
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received

• Interrupts: when FIFO reaches a certain size, or if there’s

a delay. (so if someone typing slowly at the keyboard)

also when transmit FIFO empty
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Flow Control

• Ability to start/stop without losing bytes

• Often multiple levels of buffering. FIFO, buffer on device,

buffer in OS.

• Hardware: RTS (Request to Send) and CTS (Clear to

Send) Positive or negative, one to the other. Why in

old days needed a crossover cable to connect two PCs

together.

• Software: uses the ASCII DC1 (XON) and DC3 (XOFF)
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(17 and 19) device control chars over the line. Why

bad? Cannot send binary data easily. Why?

PC
Device

RX

TX
RTS
CTS
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Signals

• TX,RX,GND (minimum)

• RTS,CTS (HW flow control)

• DSR,DTR (Data set ready, data terminal ready, other

flow control)

• DCD (data carrier detect – modem there)

• RI (ring indicator)
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• +12V for 0, -12V for 1 (inverted on transmit/receive,

regular on other pins)

(-15 to -3 or so, 15 to 3 or so).

Some are -5/5V tolerant.

Modern TTL 5/0 exist but not back compatible

3.3V I/O like on Pi troublesome

(why awkward on small embedded boards)

• DCE (data communication equipment) to DTE (data

terminal equipment) straight through. Need loopback if

DTE to DTE (swap RTS and CTS)
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Transmitting a Byte

• TX Held -12V when idle (1)

• Jumps to 12V for start bit (0)

• Bits transmitted. Low bit first. Stays at 12V if 0, -12 if

1

• If parity bit desired, sends that (even, odd, stick, or

none)

If odd, then parity bit is included that makes the number
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of 1s (including parity) odd.

If even, then parity bit included that makes number of

1s even.

Stick parity (mark = always 1, space = always 0)

• Then down to -12V for stop bit(s)

• Since no clock, no way to tell difference between

consecutive bits of same value. Starts a counter counting

at the start bit, samples values from there.
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−12V

+12V

Stop Bit(s)

Start 0 1 0 1 1 0 0
Parity would go here
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UART

• Universal Asynchronous Receiver Transmitter

• Convert parallel value to serial

• Asynchronous. Why? No clock signal wire.
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History

• back in the day spent lot of your life configuring serial

connections

• The Linux ioctl interface to this is a pain, old legacy

• Hooking old machines together (Apple II, etc)
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Speed (flow rate)

• Clock crystal, programmable divider

• Default old max speed was 115,200; many modern can

go much faster, even up to 4MBps. Cables often not up

to it as standard did not specify twisted pair

• Common speeds 1 (115.2k), 2 (57.6k), 3 (38.4k), 6

(19.2k), 12 (9.6k), 24 (4.8k), 48 (2.4k), 96 (1.2k) 300,

110 (war games acoustic coupler)
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Programs

• learn.adafruit.com/adafruits-raspberry-pi-lesson-5-using-a-console-cable/test-and-configure

• putty is a decent one for Windows

• I use minicom for Linux. A bit of a pain. Have to install

it (not by default?) Control-A Control-Z for help. Has

similar keybindings to an old DOS program Telix that I

used for years.

• OSX? Also Linux?

sudo screen /dev/ttyUSB0 115200
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File Transfer

• Kermit

• Zmodem/Xmodem/Ymodem/etc

• sz / rz on Linux
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Things you will need to set

• 115200 8N1 Software Flow

• 115200 Baud

• 8 data bits (7 or 8)

• no parity (even, odd, none)

• 1 stop bit (1, 1.5, or 2)
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USB Serial Converters

• PL2303 / FTDI most common

• Often counterfeited, in the news for that recently (and

how the companies tried to kill the counterfeits)

• Takes serial in, presents as a serial port to the OS.

ttyUSB0 on Linux, COM something really high on

windows
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