ECE 598 — Advanced Operating

Systems
Lecture 7

Vince Weaver
http://www.eece.maine.edu/~vweaver

vincent .weaver@maine.edu

5 February 2015

Announcements

e Homework #2 was assigned, due Wednesday

e Don't put it off until the last minute!

UART speed setting Example

e Calculate for 14.4kb/s

BaseFrequency
16 x Desired

e Divider =

o Divider = 22000 = 13.020

e Integer part = Integer part = 13.
Fractional part = (.020 x 64) + 0.5 =1.78 so 1 or 2.

e mmio_write (UARTO_IBRD, 13);
mmio_write (UARTO_FBRD, 1);

Scanning ATAGS

e List of variables passed by bootloader. A standard. See:

http://www.simtec.co.uk/products/SWLINUX/files/booting_article.html

e \We mostly care about getting memory size.

e Size, Tag-type, additional

e Located traditionally at 0x100 but you should really
check r3 for addr.

e Starts with ATAG_CORE

-y 3

e Ends with ATAG_NONE

e We wants ATAG_MEM and maybe ATAG_CMDLINE on
Raspberry Pi.

e Format is SIZE, TYPE, DATAO ... DATAN. Then repeat.

Integer to String Conversion

This 1t the algorithm | use, there are other ways to do
it that don't involve the backwards step (starting off by
dividing by 1billion and dividing the divisior by 10 each
time).

e Repeatedly divide by 10.
e Digit is the remainder. Repeat until quotient O.

e Make sure handle 0 case.

-y 5

e Convert each digit to ASCII by adding 48 ('0’)

e \Why does the number end of backwards?

Exceptions and Interrupts

e All architectures are different

e ARM does it a little differently from others.

ARM CPSR Register

31 30 29 28 7 6 5 4 0

N(Z|C |V 1| F|T Mode

Processor

Condition Interrupt Masks f Mode

Flags Thumb

e Current Program Status Register

e There are seven processor modes
six privledged: abort, fast interrupt, interrupt,
supervisor, system, undefined
one nonprivledged: user

e unprivledged cannot write CPSR

-y 8

ARM Interrupt Registers

User/Sys Fast IRQ Supervisor Undefined Abort
rO
rl
r2
r3
rd
r5
rb6
rf
r8 r8_fiq
r9 r9_fiq
rl0 r10_fiq
rll r11_fiq
r12 r12_fiq
r13/sp r13_fiq r13_irq r13_svc r13_undef r13_abt
r14/Ir r14_fiq r13_irq r14_svc r14_undef r14_abt
r15/pc
cpsr spsr_fiq spsr_irq Spsr_svc spsrc_undef | spsr_abt

ARM Interrupt Handling

e ARM core saves CPSR to the proper SPSR
e ARM core saves PC to the banked LR

e ARM core sets CPSR to exception mode (disables
interrupts)

e ARM core sets PC to the exception handler

/Y 10

Vector Table

Type Type | Offset | LR
Reset SVC | 0x0 —
Undefined Instruction | UND | 0x04 | Ir
Software Interrupt | SVC | 0x08 | Ir

Prefetch Abort ABT | OxOc | Ir-4
Data Abort ABT | 0x10 | Ir-8
IRQ IRQ | 0x18 | Ir-4

FIQ FIQ | Oxlc |Ir-4

e See ARM ARM ARMv6 documentation for details.
VA A 4

e Defaults to 0x000000. On some ARM you can move to
any 32-byte aligned address. Why?

e Return from IRQ subs pc,ri14,#4
Sneakily branches and gets the right status register (due

to S in SUBS)

e Interrupts: IRQ = general purpose hardware,

FIQ = fast interrupt for really fast response (only 1),
SWI = syscalls, talk to OS

e FIQ mode auto-saves r8-r12.

-y 1

e Different stacks? IRQ mode, SVC mode (boots into),
user-mode stack

e Nested vs non-nested.
Nested = better realtime. As soon as possible re-enable
interrupts. Complex though.

/Y 13

Raspberry Pi Interrupts

e Two types: GPU and ARM

e ARM: one timer, one mailbox, two doorbells, two GPU
halted, two address errors.

e Can pick what gets set to FIQ interrupt.

e No priority. If one is more important, use FIQ.

-y 14

IRQ Handlers in C

In gcc for ARM, you can specify the interrupt type with
an attribute. Automatically restores to right address.

void function () attribute__ ((interrupt ("IRQ")));

/* Can be IRQ, FIQ, SWI, ABORT and UNDEF x*/

void __attribute__((interrupt ("UNDEF"))) undefined_instruction_vector (void) {

while (1) {
/* Do Nothing */
+

Exceptions and Interrupts

e How do we get the vector to 0x07?
Copy it there after the fact. Hard part is if we want the
routines to be C code.

e Clever, have the reset vector point to start of code, so
you can have the reset vector of beginning of code and
it will jump to the right location.

_start:
ldr
ldr
ldr
ldr

pc,
pc.
PC.
12

reset_addr
undefined_addr
software_interrupt_addr
prefetch aboxrt addr

16

ldr pc,
ldr pc,
ldr pc,
ldr pc,
reset_addr:

data_abort_addr
unused_addr
interrupt_addr

fast_interrupt_addr

undefined_addr:

. word

reset

. word undefined_instruction

software_interrupt_addr:
prefetch_abort_addr:
data_abort_addr:

unused_addr:

interrupt_addr:
fast_interrupt_addr:

_start:

reset:
ldr r3,
mov
ldmia
stmia
ldmia
stmia

.word software_interrupt
.word prefetch_abort

. word data_abort
. word reset

.word interrupt

=_start

r4, #0x0000
r3!,{r5, r6,
r4!,{r5, r6,
r3!,{r5, r6,
rda!' ,{r5, r6,

.word fast_interrupt

r7, r8, r9, r10, ri11, ri12}
r7, r8, r9, r10, ri11, ri12}
r7, r8, r9, r10, ri11, ri12}
r7, r8, r9, r10, ri11, ri12}

17

Clearing the Interrupt Status Bit

_enable_interrupts:

mrs r0, cpsr

bic rO0O, r0, #0x80
msr cpsr_c, r0
mov pc, 1r

Interrupt Sources

e Section 7 of peripheral manual

19

void

Sample Interrupt Handler

__attribute__((interrupt ("IRQ"))) interrupt_vector (void) {
static int 1lit = 0;

/* Clear the ARM Timer interrupt */
/* We assume it’s the only interrupt enabled x*/
mmio_write (TIMER_IRQ_CLEAR ,Ox1);

/* Flip the LED */
if(1it) { led_off(); 1it=0; }
else {led_on(); 1lit=1; }

20

Timer Interrupt

e Section 14 of peripheral manual.

int timer_init (void) {
mmio_write (IRQ_ENABLE_BASIC_IRQ,IRQ_ENABLE_BASIC_IRQ_ARM_TIMER);

/* Timer frequency = Clk/256 * 0x400 */
mmio_write (TIMER_LOAD ,0x400);

/* Setup the ARM Timer x/

mmio_write (TIMER_CONTROL,
TIMER_CONTROL_32BIT | /* typo 23 */
TIMER_CONTROL_ENABLE |
TIMER_CONTROL_INT_ENABLE |
TIMER_CONTROL_PRESCALE_256);

/* Enable interrupts! */
el _enable_interrupts ();

}

21

