
ECE 598 – Advanced Operating
Systems
Lecture 8

Vince Weaver

http://www.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

10 February 2015

Announcements

• Homework #1 grades will be out soon

• Homework #2 : Don’t put it off until the last minute!

• Putty and Minicom seem to work. MacWise can work

for OSX, be sure to install the PL2303 driver.

Try putting a uart getc() before your boot code so it

will wait for a keypress before displaying.

• Inline asssembly problem with older compiler version.

1

• Homework #3 coming out probably on Wednesday again

2

ARM CPSR Register

N Z C V

31 30 29 28 7 6 5 4 0

I F T Mode

Interrupt Masks
Thumb

Processor
Mode

Condition

 Flags

• Current Program Status Register

• There are seven processor modes

six privledged: abort, fast interrupt, interrupt,

supervisor, system, undefined

one nonprivledged: user

• unprivledged cannot write CPSR

3

ARM Interrupt Registers
User/Sys Fast IRQ Supervisor Undefined Abort

r0
r1
r2
r3
r4
r5
r6
r7

r8 r8 fiq
r9 r9 fiq

r10 r10 fiq
r11 r11 fiq
r12 r12 fiq

r13/sp r13 fiq r13 irq r13 svc r13 undef r13 abt
r14/lr r14 fiq r13 irq r14 svc r14 undef r14 abt
r15/pc

cpsr spsr fiq spsr irq spsr svc spsr undef spsr abt

4

Setting up the Stacks
/* Set up the Interrupt Mode Stack */

/* First switch to interrupt mode , then update stack pointer */

mov r3 , #(CPSR_MODE_IRQ | CPSR_MODE_IRQ_DISABLE | CPSR_MODE_FIQ_DISA

BLE)

msr cpsr_c , r3

mov sp , #0 x4000

/* Switch back to supervisor mode */

mov r3 , #(CPSR_MODE_SVR | CPSR_MODE_IRQ_DISABLE | CPSR_MODE_FIQ_DISA

BLE)

msr cpsr_c , r3

5

Our Memory Map

0x1c00 0000

0xffff ffff

0x2100 0000

0x2000 0000

0x0000 0000

0x0000 0100

0x0000 8000

Our Operating

System

Invalid

Peripheral

Registers

GPU RAM

Unused RAM

System Stack

IRQ Stack

ATAGs

IRQ Vectors

(4GB)

(528MB)

(512MB)

(448MB)

(32k)

(256)

(16k)0x0000 4000

6

Timer Interrupt

• Section 14 of peripheral manual.

There are also the system timers (4 timers described in

Section 12).

int timer_init(void) {

mmio_write(IRQ_ENABLE_BASIC_IRQ ,IRQ_ENABLE_BASIC_IRQ_ARM_TIMER);

/* Timer frequency = Clk /256 * 0x400 */

mmio_write(TIMER_LOAD ,0x400);

/* Setup the ARM Timer */

mmio_write(TIMER_CONTROL ,

TIMER_CONTROL_32BIT | /* typo 23 */

TIMER_CONTROL_ENABLE |

TIMER_CONTROL_INT_ENABLE |

TIMER_CONTROL_PRESCALE_256);

7

/* Enable interrupts! */

// _enable_interrupts ();

}

8

Enabling Interrupts
static inline uint32_t get_CPSR(void) {

uint32_t temp;

asm volatile ("mrs %0,CPSR":"=r" (temp):) ;

return temp;

}

static inline void set_CPSR(uint32_t new_cpsr) {

asm volatile ("msr CPSR_cxsf ,%0"::"r"(new_cpsr));

}

/* enable interrupts */

static inline void enable_interrupts(void){

uint32_t temp;

temp = get_CPSR ();

set_CPSR(temp & ~0x80);

}

9

SWI Interrupt
uint32_t __attribute__ ((interrupt("SVC"))) swi_handler(

uint32_t r0, uint32_t r1, uint32_t r2, uint32_t r3) {

register long r7 asm ("r7");

printk("Syscall %d\n",r7);

return 42;

}

10

System Calls

• EABI: Arguments in r0 through r6. System call number

in r7.

swi 0

• OABI: Arguments in r0 through r6. swi

SYSBASE+SYSCALLNUM. Why bad? No way to get swi

value except parsing back in instruction stream.

11

ABI

What is an ABI and why is it necessary?

12

Linux GNU EABI

• Procedure Call Standard for the ARM architecture

• ABI, agreed on way to interface with system.

• Arguments to registers. r0 throgh r4.

• Return value in r0.

• How to return float, double, pointers, 64-bit values?

• How to pass the above?

13

• What if more than 4 arguments? (stack)

• Is there a stack, how aligned?

• Structs, bitfields, endianess?

• Callee vs Caller saved registers? (A subroutine must

preserve the contents of the registers r4-r8, r10, r11 and

SP)

• Frame Pointer?

14

Executables

15

Executable Format

• ELF (Executable and Linkable Format, Extensible

Linking Format)

Default for Linux and some other similar OSes

header, then header table describing chunks and where

they go

• Other executable formats: a.out, COFF, binary blob

16

ELF Layout

ELF Header

Text (Machine Code)

Data (Initialized Data)

Program header

Symbols

Debugging Info

....

Section header

17

ELF Description

• ELF Header includes a “magic number” saying it’s

0x7f,ELF, architecture type, OS type, etc. Also location

of program header and section header and entry point.

• Program Header, used for execution:

has info telling the OS what parts to load, how, and

where (address, permission, size, alignment)

• Program Data follows, describes data actually loaded

into memory: machine code, initialized data

18

• Other data: things like symbol names, debugging info

(DWARF), etc.

DWARF backronym = “Debugging with Attributed

Record Formats”

• Section Header, used when linking:

has info on the additional segments in code that aren’t

loaded into memory, such as debugging, symbols, etc.

19

Linux Virtual Memory Map

Operating System
Stack

Operating System

0xffff ffff

Exexcutable Info

Environment Strings

0xbfff ffff

Cmd Line Arg Strings

Executable Name

Padding

Stack

Cmd Line Arg Count

Command Line Pointers

Environment Pointers

ELF Auxiliary Vectors

Text (Executable)

0x0804 8000

Data

BSS

Heap

mmap

vdso

Null Guard Page
0x0000 0000

shared libraries

20

Program Memory Layout on Linux

• Text: the program’s raw machine code

• Data: Initialized data

• BSS: uninitialized data; on Linux this is all set to 0.

• Heap: dynamic memory. malloc() and brk(). Grows

up

• Stack: LIFO memory structure. Grows down.

21

Program Layout

• Kernel: is mapped into top of address space, for

performance reasons

• Command Line arguments, Environment, AUX vectors,

etc., available above stack

• For security reasons “ASLR” (Address Space Layout

Randomization) is often enabled. From run to run the

exact addresses of all the sections is randomized, to

make it harder for hackers to compromise your system.

22

Loader

• /lib/ld-linux.so.2

• loads the executable

23

Static vs Dynamic Libraries

• Static: includes all code in one binary.

Large binaries, need to recompile to update library code,

self-contained

• Dynamic: library routines linked at load time.

Smaller binaries, share code across system, automatically

links against newer/bugfixes

24

How a Program is Loaded on Linux

• Kernel Boots

• init started

• init calls fork()

• child calls exec()

• Kernel checks if valid ELF. Passes to loader

• Loader loads it. Clears out BSS. Sets up stack. Jumps

25

to entry address (specified by executable)

• Program runs until complete.

• Parent process returned to if waiting. Otherwise, init.

26

UCLinux

27

Flat File Format

• http://retired.beyondlogic.org/uClinux/bflt.htm

• bFLT or 0x62, 0x46, 0x4C, 0x54

• struct flat_hdr {

char magic [4];

unsigned long rev; /* version */

unsigned long entry; /* Offset of first executable instruction

with text segment from beginning of file */

unsigned long data_start; /* Offset of data segment from beginning of

file */

unsigned long data_end; /* Offset of end of data segment

from beginning of file */

unsigned long bss_end; /* Offset of end of bss segment from beginning

of file */

/* (It is assumed that data_end through bss_end forms the bss segment .) */

28

unsigned long stack_size; /* Size of stack , in bytes */

unsigned long reloc_start; /* Offset of relocation records from

beginning of file */

unsigned long reloc_count; /* Number of relocation records */

unsigned long flags;

unsigned long filler [6]; /* Reserved , set to zero */

};

29

