
ECE 598 – Advanced Operating
Systems

Lecture 9

Vince Weaver

http://www.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

12 February 2015

Announcements

• Homework #1 and #2 grades will be finished soon,

hopefully by the weekend.

• Homework #3 posted soon.

1

Flat File Format

• http://retired.beyondlogic.org/uClinux/bflt.htm

• bFLT or 0x62, 0x46, 0x4C, 0x54

• struct flat_hdr {

char magic [4];

unsigned long rev; /* version */

unsigned long entry; /* Offset of first executable instruction

with text segment from beginning of file */

unsigned long data_start; /* Offset of data segment from beginning of

file */

unsigned long data_end; /* Offset of end of data segment

from beginning of file */

unsigned long bss_end; /* Offset of end of bss segment from beginning

of file */

/* (It is assumed that data_end through bss_end forms the bss segment .) */

2

unsigned long stack_size; /* Size of stack , in bytes */

unsigned long reloc_start; /* Offset of relocation records from

beginning of file */

unsigned long reloc_count; /* Number of relocation records */

unsigned long flags;

unsigned long filler [6]; /* Reserved , set to zero */

};

3

Figuring out how it actually works

• Spec isn’t worth much

Your best bet is various Wikis and blog postings (TI-

nspire?)

• Actual code more useful

• fs/binfmt flat.c in kernel source.

• Making the binaries hard. Not just a simple matter of

telling gcc or linker (no one has bothered yet). Most

4

people use “elf2flt” but not-standard and hard to even

find which code repository to use.

5

Loading a flat binary

• load flat binary()

• adjust stack space for arguments (argv and envp)

– loading header. Uses ntohl(). Why?

Endian issues.

– check for bFLT magic

– check version

– check rlimits() [stack, etc]

– setup new exec()

6

– allocate mem for our binary (separately handle XIP

and compressed format)

– read code()

– put all of our values in mm struct (Start/stop of all

sections)

– RELOCATION – fix up any symbols that changed due

to being moved. (HOW DOES THIS WORK)

– flush icache()

– zero the BSS and STACK areas

• setup shared libraries

7

• install exec creds()

• set binfmt()

• actually copy command line args, etc, at front of stack

• put stack pointer in mm structure

• start thread()

8

PIC/PIE

• Position independent code

• Instead of loading from absolute address, uses an offset,

usually in a register or PC-relative.

9

Relocation

• List of offsets to pointers

• PIC compiles things with zero offset

• At load time the pointers are fixed up to have the load

address

• Separate relocation for GOT (global offset table) which

is a list of pointers at the beginning of the data segment,

ending with -1

10

Flat Shared Libraries

• Like mini executables, can have up to 256 of them

• Libraries loaded in place, then the callsites are fixed up

to have the right address.

• Also at start time the various library init routines are

called

11

Execute in Place

• Want our text in ROM. Why? Save space, save copying.

Why bad? ROM often slow, more complicated binaries

(data not follow text)

12

RAM Disk

• How to load our code?

• Can we load from disk? No driver yet.

• We can create a RAM disk, will be loaded by our

bootloader right after. Sometimes called an initrd.

13

Starting a Process and Context switching

14

r14 the process LR

r13

r12

r12

r10

r9

r8

r7

r6

r5

r4

r3

r2

r1

r0 PCB pointer points here (for stm instruction)

lr pc from process to return to

spsr

15

Process Control Block

• PCB – process control block. One for each process

• r0-r14 saved. PC. cpsr

• Pid, uid

• Memory ranges

• Process accounting

• Ready, sleeping, waiting, etc

16

Entering User Mode
mov r0 , #0x10

msr SPSR , r0

ldr lr , =first

movs pc , lr

17

ARM Context Switch

r12 = new process PCB, r13 = old
STM sp ,{R0 -lr}^ ; Dump user registers above R13.

; ^ means get user register

MRS R0 , SPSR ; get the svaed user status

STMDB sp , {R0 , lr} ; and dump with return address below.

; lr is the handler lr, pointing

; to pc we came fom

LDR sp , [R12], #4 ; Load next process info pointer.

CMP sp , #0 ; If it is zero , it is invalid

LDMDBNE sp , {R0 , lr} ; Pick up status and return address.

MSRNE SPSR_cxsf , R0 ; Restore the status.

LDMNE sp , {R0 - lr}^ ; Get the rest of the registers

NOP

SUBSNE pc, lr, #4 ; and return and restore CPSR.

; Insert "no next process code" here.

18

Storing
ldmfd r13!,{r0-r3,r12 ,r14}

ldr r13 ,= PCB_PtrCurrentTask

ldr r13 ,[r13]

sub r13 ,r13 ,# offset15regs

stmia r13 ,{r0 -r14}^

mrs r0 ,spsr

stmdb r13 ,{r0 ,r14}

19

Loading
ldr r13 ,=PCB_PtrNextTask

ldr r13 ,[r13]

sub r13 ,r13 ,# offset15regs

ldmdb r13 ,{r0 ,r14}

msr spsr_cxsf ,r0

ldmia r13 ,{r0=r14}^ ; ^ means update user regs

ldr r13 ,= PCB_IRQstack

ldr r13 ,[r13]

movs pc,r14

20

