ECE 598 — Advanced Operating

Systems
Lecture 9

Vince Weaver
http://www.eece.maine.edu/~vweaver

vincent .weaver@maine.edu

12 February 2015

Announcements

e Homework #1 and #2 grades will be finished soon,
hopefully by the weekend.

e Homework #3 posted soon.

Flat File Format

e http://retired.beyondlogic.org/uClinux/bflt.htm

e bFLT or 0x62, 0x46, 0x4C, O0x54

® struct flat_hdr {
char magic [4];

unsigned long rev; /* version x*/
unsigned long entry,; /* 0ffset of first executable instruction
with text segment from beginning of file */
unsigned long data_start; /* 0ffset of data segment from beginning of
file */
unsigned long data_end; /* 0ffset of end of data segment
from beginning of file x*/
unsigned long bss_end; /* 0ffset of end of bss segment from beginning
of file x/

/* (It is assumed that data_end through bss_end forms the bss segment.) */

unsigned
unsigned

unsigned
unsigned
unsigned

long
long

long
long
long

stack_size;
reloc_start;

reloc_count;
flags;
filler [6];

/ *

/ *

/ *

Size of stack, in bytes */

Offset of
beginning
Number of

Reserved,

relocation records from
of file x/
relocation records x*/

set to zero x/

Figuring out how it actually works

e Spec isn't worth much
Your best bet is various Wikis and blog postings (TI-
nspire?)

e Actual code more useful
e fs/binfmt_flat.c in kernel source.

e Making the binaries hard. Not just a simple matter of
telling gcc or linker (no one has bothered yet). Most

-y 4

people use “elf2flt” but not-standard and hard to even
find which code repository to use.

Loading a flat binary

e load_flat_binary()

e adjust stack space for arguments (argv and envp)

— loading header. Uses ntohl (). Why?
Endian issues.

— check for bFLT magic

— check version

— check rlimits() [stack, etc]

— setup_new_exec()

— allocate mem for our binary (separately handle XIP
and compressed format)

— read_code()

— put all of our values in mm struct (Start/stop of all
sections)

— RELOCATION — fix up any symbols that changed due
to being moved. (HOW DOES THIS WORK)

— flush_icache()

— zero the BSS and STACK areas

e setup shared libraries

-y ;

install _exec_creds()

set_binfmt()

actually copy command line args, etc, at front of stack
put stack pointer in mm structure

start_thread()

PIC/PIE

e Position independent code

e Instead of loading from absolute address, uses an offset,
usually in a register or PC-relative.

Relocation

e List of offsets to pointers
e PIC compiles things with zero offset

e At load time the pointers are fixed up to have the load
address

e Separate relocation for GOT (global offset table) which
s a list of pointers at the beginning of the data segment,
ending with -1

-y 10

Flat Shared Libraries

e Like mini executables, can have up to 256 of them

e Libraries loaded in place, then the callsites are fixed up
to have the right address.

e Also at start time the various library init routines are
called

-y 11

Execute in Place

e \Want our text in ROM. Why? Save space, save copying.
Why bad? ROM often slow, more complicated binaries
(data not follow text)

/Y 12

RAM Disk

e How to load our code?
e Can we load from disk? No driver yet.

e We can create a RAM disk, will be loaded by our
bootloader right after. Sometimes called an initrd.

-y 13

Starting a Process and Context switching

-y 14

rl4
rl3
r12
r12
r10

the process LR

15

Process Control Block

e PCB — process control block. One for each process
e r0-r14 saved. PC. cpsr

e Pid, uid

e Memory ranges

e Process accounting

e Ready, sleeping, waiting, etc

16

mov rO, #0x10
msr SPSR, rO0
ldr 1lr, =first
movs pc, 1r

Entering User Mode

17

rl12 =

STM sp,{RO-1r}"~ ; Dump user registers above R13.
; ~ means get user register
MRS RO, SPSR ; get the svaed user status
STMDB sp, {RO, 1r} ; and dump with return address below.
; lr is the handler 1lr, pointing
; to pc we came fom
LDR sp, [R12], #4 ; Load next process info pointer.
CMP sp, #0 ; If it is zero, it is imnvalid
LDMDBNE sp, {RO, 1r} ; Pick up status and return address.
MSRNE SPSR_cxsf, RO ; Restore the status.
LDMNE sp, {RO - 1r}~ ; Get the rest of the registers
NOP
SUBSNE pc, 1r, #4 ; and return and restore CPSR.

ARM Context Switch

new process PCB, r13 = old

; Insert "mopnext_ process code" here.

18

ldmfd r13!,{r0-r3,r12,r14}
ldr r13,=PCB_PtrCurrentTask
ldr r13,[r13]

sub r13,r13 ,#offsetlbregs
stmia r1i3,{r0-r14}"

mrs r0O,spsr

stmdb ri3,{r0,r14}

Storing

19

ldr r13,=PCB_PtrNextTask
ldr r13,[r13]

sub r13,r13 ,#offsetlbregs
ldmdb r13,{r0,r14}

msr spsr_cxsf ,r0

ldmia r13,{r0=r14}" ;
ldr r13,=PCB_IRQstack

ldr r13,[r13]

movs pc,rl4

Loading

means update user regs

20

