
ECE 598 – Advanced Operating
Systems

Lecture 13

Vince Weaver

http://www.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

17 March 2015



Announcements

• Homework #3 grades were sent out

• Homework #4 posted soon?

1



Midterm Review

• OS benefits

We’ve seen this before. Abstraction, multi-tasking,

security, portability, manage resources.

Not really: smoother UI? Hide details from users?

• OS downsides:

overhead, real-time

• Serial: 115200 8N1

• HW flow control: separate wire to indicate DTS/RTS,

2



not sent over the TX/RX lines. Some mixing up of

UART FIFO start/stop and transmission start/stop

• SW flow control: ASCII chars sent down the line. How

do you handle if you want to send those chars? Control-

S? Story about +++ on modems on old days?

• Abstracting away the Pi2

• Avoiding read/modify/write. Mostly because it’s two

slow operations plus some somewhat complex bit

manipulation.

3



Can be a race if we have to write existing values

back exactly but they change somehow in between (for

example, an interrupt is messing with things).

• Re-entering kernel – syscall or interrupt

• Interrupt code, has own stack, so not a problem user

messes with it

That’s why it does. On some arch other probs, stacks

need to be aligned and can crash if IRQ happens and

has to use user stack

• IRQ vs FIQ. Faster, as saves more register state so you

4



don’t have to save it out to slow memory. Also higher

priority. Only one of them.

• Memory. How much is free? 44kb.

I guess diagram could have been clearer, growing up.

First fit, 0x3

Best fit 0xC

Less fragmentation

malloc() does have realloc(), but the code has to do

this explicitly. It’s not necessarily easy on C to update

every pointer address, especially as you can cast back

and forth to int.

5



• Virtual Mem

Can have more mem than phys, each gets its own view,

memory protection

A bit unclear. Meant to be easy. Just maps to separate

phys addresses

Reasons to be shared? Shared memory, shared libraries,

copy-on-write

6



HW3 Review

• Comment your code!

• Enabling blinking, not too bad.

• Command line parsing

• Syscall. Not too bad either. How it works under Linux.

• IRQ/FIQ = see exam review

• Entering user mode, write CSPR. Return to kernel,

7



interrupt or syscall.

• int a = 0; stack

static int b =1; data

static int c =0; bss

int *d=malloc(sizeof(int))

main=0 x400450

a=0 x7fff98145444

b=0 x6009d8

c=0 x6009e0

d=0 x7fff98145448 *d=0 x13da010

8



Filesystems

• What is a file?

Unix is just a stream of bytes. That’s not necessarily the

only thing. Old systems files were just 80-column punch

card images.

• How do you store it?

In a “file”?

Everything in root directory? Hiearchical? Database?

• Why not just load everything into memory? Too big?

9



Share with other processes? Persistent across reboots?

10



Filesystems metadata

• Name?

– UNIX – anything that is not / or NUL.

What about ”-rf” or * or ?

– Windows, more restrictions. Thins like CON and COM

and PTR. Can cause problems.

– DOS famously had 8.3 filenames.

– Mac used to use : as directory separator.

• Case sensitive? Bob or bob or BoB?

11



• Special files?

– Regular files

– Directories

– Char devices, block devices

– Links (hard, soft)

• Attributes

– Permissions (read, write, execute)

– Owner (user, group)

– Access time (atime, ctime, mtime)

– Current size

12



– Locks

– Hidden

– Immutable / System

– Extended attributes / capabilities

13



File Operations

• Create

• Delete (Unlink)

• Open

• Close

• Read

• Write

14



• Append

• Seek

• Get attributes

• Set attributes

• Rename/move

• Memory Map

15



File Descriptors

• On Linux/Unix ”everything is a file”

• When open a file or object, get a number that indexes

into a table, each referring to a file.

• Low-level syscalls mostly operate on file descriptors

16



Directories/Folders

• Root directory

• Hiearchical

• Path names. /, ., ..

• Operations

– create

– delete

– opendir

17



– closedir

– readdir

– rename

– link

– unlink

18



Filesystems

• Disks divided into paritions

• Often a MBR (master boot record) and partition table

• Then individual filesystems

• Often first is called superblock, conaining all master info.

• Some sort of free list, saying what areas are free (bitmap

or pointers)

19



• inodes, an array of data structures containing master

info for each file (and if file is small, contents of file)

• root directory entry

• directory layout

• file data

20


