
ECE 598 – Advanced Operating
Systems

Lecture 14

Vince Weaver

http://www.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

19 March 2015



Announcements

• Homework #4 posted soon?

1



Filesystems

• Often a MBR (master boot record) and partition table

• Disks divided into paritions

– Why partitions?

– Split up system (/, /boot, /usr, /home)

– Why is boot separate? Smaller so boot loader can

access, maybe a different fs type.

– Dual-booting operating systems

– Swap partitions

2



• Then individual filesystems

3



Filesystems – High Level

• Often first is called superblock, conaining all master info.

• Some sort of free list, saying what areas are free (bitmap

or pointers)

• inodes, an array of data structures containing master

info for each file (and if file is small, contents of file)

• root directory entry

• directory layout

4



• file data

5



File Layout

• Contiguous. Files consecutive blocks. Simple. Fast to

read (just read X blocks) Has fragmentation problems

like with memory alloc.

Ever used? read-only, CD-ROMs

• Linked list. Inode points to first part, each block points

to next. No fragmentation, seeking through file involves

lots of reads.

Can also instead have the pointers in one single block,

each pointing to next block. File allocation table. Whole

6



thing has to be in mem at once.

• inode table. List of blocks in file, last block reserved to

point to next inode table.

7



Disk performance

• Traditionally a lot of this came down to hardware.

• Spinning rust disks; head movement, cylinders/sectors.

Reading consecutive faster, random access bad

(milisecond bad)

More complicated, fancy disk interfaces and embedded

processors. Large caches (why can that be bad), shingled

disks?

• Much of this goes away with flash disks, but still emulate

8



old disk interface

• Name lookup can also be slow.

9



Common Filesystems

• Windows: NTFS, FAT

• Linux: EXT4, BTRFS

• OSX: HFS+

• Media: ISO9660, UDF

10



Fat FS

• FAT-12/FAT-16/FAT-32

• Various block sizes from 512 - 32kB (tradeoffs)

• Format

– Boot Block – 512 bytes, first part configuration info

(block size, blocks in disk, FATs, etc), rest actual boot

loader code

11



0 Boot Block

512 Fat #1

...

... Fat #N

... Root Directory

... Data Blocks
– One or more copies of File Allocation Table (FAT).

Why multiple copies? Actually has to fit entirely in

RAM.

Just a table of 16-bit values, one for each cluster

pointing to the next cluster in the file.

12



0 //////

1 //////

2 3

3 5

4 0

5 0

. . .

N 0
– Root directory entry follows after last FAT.

13



8 bytes filename

3 bytes extension

1 byte attr

10 bytes reserved

2 bytes creation time (h/m/s) second must be even

2 bytes creation date

2 bytes start cluster

4 bytes filesize

• Cluster size. Have to make it bigger to fit filesystems

bigger than 32MB. Why can that be bad? (mostly,

wasted space with small files)

14



• VFAT – long filenames and others, win98.

Says there is one with invalid attr value 0xf

A dummy file entry is put beforehand to hold long name.

ALso a compatible one is created.

Also reserved 10 bytes, extend file time to have ms

resolution, extra timestamps.

• FAT32 – increased sizes so can have max filsesize by

4GB.

• UMSDOS – linux filesystem that let you have

15



permissions, long filenames on top of FAT by having

a UMSDOS file in each subrdirectory holding the extra

info.

• exFAT – advanced new FAT by Microsoft. Heavily

patented so they can make money off of it.

16



Ext2 FS

• All structures are little-endian (To aid in moving between

machines)

• Format

– Boot sector, boot block 1, boot block 2, boot block 3

– Block group: superblock, fs descriptor, block bitmap,

inode bitmap, inode table, data blocks

– Superblock – located at offset 1024 bytes. Copies

scattered throughout (fewer in later versions)

17



Info on all the inode groups, block groups, etc.

– Block descriptor table – description of how disk is split

up into block groups

– Block bitmap – bitmap of blocks (1 used, 0 available)

– Inode bitmap – bitmap of available inodes

– Inode table – all metadata (except filename) for file

stored in inode

Second entry in inode table points to root directory

– Directory info – have an inode.

Initial implementation was single linked list. Newer use

hash or tree.

18



Holds inode, and name (up to 256 chars). inode 0

means unused.

• Hard links – multiple directory entries can point to same

inode

• . and .. entries, point to inode of directory entry

• Subdirectory entries have name, and inode of directory

19


