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Announcements

• I’ll be at ISPASS on Tuesday the 31st, so class is

canceled.

• HW#5 will be posted soon.
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Filesystems Continued
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Networked File Systems

• Allow a centralized file server to export a filesystem to

multiple clients.

• Provide file level access, not just raw blocks (NBD)

• Clustered filesystems also exist, where multiple servers

work in conjunction.

3



NFS – Network File System (NFS2/3/4)

• Developed by Sun in the 80s.

• Stateless. Means server and client can reboot wihtout

the other noticing.

• A server, nfsd, exports filesystems as described in

/etc/exports. The server can be in userspace or

in the kernel

• Needs some sort of ”file handle” unique value to specify
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value. Often cheat and use inode value. Problem with

older version of protocol with only 32-bit handles.

• UDP vs TDP

• Read-ahead can help performance

• Cache consistency a problem. One way is to just have

timeouts that flush data regularly (3-30s)

• List of operations (sort of like syscalls) sent to server

read sends a packet with file-handle, offset, and length
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No open syscall; server has no list of open files. This

way there is no state needed, can handle reboots.

• nfsroot
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CIFS/SMB

• Windows file sharing.

• Poorly documented

• Samba reimplements it, originally reverse-engineered.
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Virtual/Pseudo Filesystems

• Files do not exist on disk; they are virtual, fake files that

the kernel creates dynamically in memory

• proc

• sys

• debugfs

• usbfs
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procfs

• Originally process filesystem. Each process gets a

directory (named by the process id (pid)) under /proc

Tools like top and ps use this info.

– cmdline

– cwd

– environ

– exe

– fd

– maps
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• Eventually other arbitrary files were also included under

proc, providing system information

– cpuinfo

– meminfo

– interrupts

– mounts

– filesystems

– uptime

• ABI issues – these files are part of the kernel, and even

though the intention was that they could come and
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go at will, enough people write programs that depend

on them, the values cannot be easily changed without

breaking the ABI
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sysfs

• procfs was getting too cluttered, so sysfs was created

• intended to provide tree with information on devices

• one-item per file and strict documentation rule

• also hoped that it would replace sysctl() and ioctl() but

that hasn’t happened
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Other Filesystem Features

• Holes – why store blocks of zeros in a file? Why not

instead note when a file has a ”hole” in it? This lets

large files that are mostly zeros not take up much space

on disk.

• Compression – transparently compress files. Does have

some performance issues, write issues (do you have to

decompress, write, then recompress?) and also files

rarely compress to nice power-of-two sizes.
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• Online fsck

• Defragmentation

• Undelete

• Secure Delete

• Snapshots

• Journaling

• De-dup
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• Quotas – especially an issue on multi-user machines, you

want to keep any one user from filling up the disk.

• Encryption

• Locking – may want to prevent more than one person

writing a file at a time as it can get corrupted
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Linux VFS

• VFS interface - VFS / Virtual Filesystem / Virtual

Filesystem Switch

• Makes all filesystems look like Linux filesystems. Might

need hacks; i.e. for FAT have to fake a superblock,

directory entries, and inodes (generate on the fly).

Can be important having consistent inode numbers as

filesystems like NFS use them even across reboots.

• Objects
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– superblock

– inode object (corresponds to file on disk)

– file object – info on an open file (only exists in memory)

– dentry object – directory entry.

• Can use default versions, such as default llseek

• dentries are cached. As they get older they are freed.

• dentry operations tale. hash. compare (how you handle

case sensitive filesystems)
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Linux Filesystem Interface

• linux/fs.h

• Module. Entry point init romfs fs(), exit romfs fs()

– init romfs fs() – register filesystem()

name, romfs mount, romfs kill sb

– romfs mount – mount bdev(), romfs fill super

– sb− >s op=&romfs super ops();

– romfs iget() − > i op struct, gets pointed to in each

inode
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mounting

• Opens superblock

• Inerts into linked list of opened filesystems
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pathname lookup

• If begins with /, starts with current− >fs− >root

• otherwise, relative path, starts with current− >fs− >path

• looks up inode for starting directory, then traverses until

it gets to the one wanted

• the dentry cache caches directory entries so the above

can happen without having to do any disk reads if the

directory was used recently before
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• the access rights of intervening directories must be

checked (excute, etc)

• symbolic links can be involved

• you might enter a different filesystem

• Should you cache invalid file lookups?
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open syscall

• getname() to get name from process

• get unused fd() to get the file descriptor

• calls filp open()

– creates new file structure

– open namei()

– lookup dentry()

• validates and sets up the file
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• returns a fd
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FUSE

• Allows creating filesystem drivers in userspace

• Works on various OSes
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