
ECE 598 – Advanced Operating
Systems

Lecture 16

Vince Weaver

http://www.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

26 March 2015



Announcements

• I’ll be at ISPASS on Tuesday the 31st, so class is

canceled.

• HW#5 will be posted soon.

1



Filesystems Continued

2



Networked File Systems

• Allow a centralized file server to export a filesystem to

multiple clients.

• Provide file level access, not just raw blocks (NBD)

• Clustered filesystems also exist, where multiple servers

work in conjunction.

3



NFS – Network File System (NFS2/3/4)

• Developed by Sun in the 80s.

• Stateless. Means server and client can reboot wihtout

the other noticing.

• A server, nfsd, exports filesystems as described in

/etc/exports. The server can be in userspace or

in the kernel

• Needs some sort of ”file handle” unique value to specify

4



value. Often cheat and use inode value. Problem with

older version of protocol with only 32-bit handles.

• UDP vs TDP

• Read-ahead can help performance

• Cache consistency a problem. One way is to just have

timeouts that flush data regularly (3-30s)

• List of operations (sort of like syscalls) sent to server

read sends a packet with file-handle, offset, and length

5



No open syscall; server has no list of open files. This

way there is no state needed, can handle reboots.

• nfsroot

6



CIFS/SMB

• Windows file sharing.

• Poorly documented

• Samba reimplements it, originally reverse-engineered.

7



Virtual/Pseudo Filesystems

• Files do not exist on disk; they are virtual, fake files that

the kernel creates dynamically in memory

• proc

• sys

• debugfs

• usbfs

8



procfs

• Originally process filesystem. Each process gets a

directory (named by the process id (pid)) under /proc

Tools like top and ps use this info.

– cmdline

– cwd

– environ

– exe

– fd

– maps

9



• Eventually other arbitrary files were also included under

proc, providing system information

– cpuinfo

– meminfo

– interrupts

– mounts

– filesystems

– uptime

• ABI issues – these files are part of the kernel, and even

though the intention was that they could come and

10



go at will, enough people write programs that depend

on them, the values cannot be easily changed without

breaking the ABI

11



sysfs

• procfs was getting too cluttered, so sysfs was created

• intended to provide tree with information on devices

• one-item per file and strict documentation rule

• also hoped that it would replace sysctl() and ioctl() but

that hasn’t happened

12



Other Filesystem Features

• Holes – why store blocks of zeros in a file? Why not

instead note when a file has a ”hole” in it? This lets

large files that are mostly zeros not take up much space

on disk.

• Compression – transparently compress files. Does have

some performance issues, write issues (do you have to

decompress, write, then recompress?) and also files

rarely compress to nice power-of-two sizes.

13



• Online fsck

• Defragmentation

• Undelete

• Secure Delete

• Snapshots

• Journaling

• De-dup

14



• Quotas – especially an issue on multi-user machines, you

want to keep any one user from filling up the disk.

• Encryption

• Locking – may want to prevent more than one person

writing a file at a time as it can get corrupted

15



Linux VFS

• VFS interface - VFS / Virtual Filesystem / Virtual

Filesystem Switch

• Makes all filesystems look like Linux filesystems. Might

need hacks; i.e. for FAT have to fake a superblock,

directory entries, and inodes (generate on the fly).

Can be important having consistent inode numbers as

filesystems like NFS use them even across reboots.

• Objects

16



– superblock

– inode object (corresponds to file on disk)

– file object – info on an open file (only exists in memory)

– dentry object – directory entry.

• Can use default versions, such as default llseek

• dentries are cached. As they get older they are freed.

• dentry operations tale. hash. compare (how you handle

case sensitive filesystems)

17



Linux Filesystem Interface

• linux/fs.h

• Module. Entry point init romfs fs(), exit romfs fs()

– init romfs fs() – register filesystem()

name, romfs mount, romfs kill sb

– romfs mount – mount bdev(), romfs fill super

– sb− >s op=&romfs super ops();

– romfs iget() − > i op struct, gets pointed to in each

inode

18



mounting

• Opens superblock

• Inerts into linked list of opened filesystems

19



pathname lookup

• If begins with /, starts with current− >fs− >root

• otherwise, relative path, starts with current− >fs− >path

• looks up inode for starting directory, then traverses until

it gets to the one wanted

• the dentry cache caches directory entries so the above

can happen without having to do any disk reads if the

directory was used recently before

20



• the access rights of intervening directories must be

checked (excute, etc)

• symbolic links can be involved

• you might enter a different filesystem

• Should you cache invalid file lookups?

21



open syscall

• getname() to get name from process

• get unused fd() to get the file descriptor

• calls filp open()

– creates new file structure

– open namei()

– lookup dentry()

• validates and sets up the file

22



• returns a fd

23



FUSE

• Allows creating filesystem drivers in userspace

• Works on various OSes

24


