
ECE 598 – Advanced Operating
Systems

Lecture 17

Vince Weaver

http://www.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

2 April 2015



Announcements

• HW#5 was posted.

• HW#6 will be back to coding.

1



HW#4 Review

1. Purpose of a filesystem

Store your files, safely, and allow finding them by name.

Organize data.

2. Filename in inode?

No. This is because hard-links, more than one directory

entry can link to a file.

Could you still do name lookup if were in the inode?

Yes, but it would be slower. (seeks are bad)

2



3. Ext2size

(a) No indirect == 12 entries, 12kB

(b) 1st indirect = 12kb+256kb = 268kB

(c) 2nd indirect = 12kb+256kb + 256*256kB = 65MB

(d) 3rd indirect = 12kb+256kb+256*256kb +

256*256*256kb = 16GB

(e) Overhead = 0 + 1 + (1+256) + (1+256+256*256)

= 64.5MB

4. Pick a fs. As discussed various are available. Some that

people picked:

3



sysfs, afs, ramfs, coda, squashfs, reiserfs, ntfs, 9p, jfs

5. EXT2 better than fat?

filesysize, long filenames, better performance

Fat better than ext2?

Simpler to implement, comaptible to more OSes

4



ISPASS Recap

• IEEE International Symposium on Performance Analysis

of Systems and Software

• What’s a conference like.

• Philadelphia

• Not much directly related to Operating Systems

5



Hardware Performance Counters –
ARM1176

• Three registers

• cp15 c15

MRC p15, 0, <Rd>, c15, c12, 0

MCR p15, 0, <Rd>, c15, c12, 0

• Performance Monitor Control Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SBZ EvtCount0 EvtCount1 X CCR CR1 CR0 SBZ ECC EC1 EC0 D C P E

6



– EvtCount0/1 – event to measure in Counters 0 or 1

– X – Enable external bus?

– CCR/CR1/CR0 – Cycle/R0/R1 register overflow

– ECC/EC1/EC0 – enable overflow interrupt

– D – divide cycle count by 64

– C – reset cycle count reg

– P – reset R0 and R1

– E – enable all counters

• Can set V bit to allow user mode access to registers

• Cycle count register, MRC p15, 0, <Rd>, c15, c12,

7



1

• Register 0, MRC p15, 0, <Rd>, c15, c12, 2

• Register 1, MRC p15, 0, <Rd>, c15, c12, 3

8



Other features

• Overflow interrupts, why useful? Counts greater than 32

bit

Profiling

• User-space reading

• Multiplexing

• User/Kernel split

• Hardware watchdog

9



• NMI interrupt

10



Kernel Interfaces

11



Most Simple – Raw Hardware

• Let userspace program MSRs directly

• Usually requires at least some level of kernel driver, but

very small.

12



perfctr like

• ioctl() interface to start/stop

13



perfmon2

• Initially 12 system calls

• Why not a mux? Frowned upon.

• As much as possible done in userspace. Why?

Event scheduling, generic events, multiplexing.

• The exported interface was a thin layer over the

underlying PMU hardware

14



perf event

• Everything done in kernel. Event scheduling,

multiplexing, generic events, etc. why?

• perf event open() syscall returns a fd per event. Why

might that be bad?

• attr, pid, cpu, group, flags

• attr large struct with 40+ conflicting options

• pid, lets you attach to process

15



• cpu, pick which cpu to monitor on

• group, lets you have group leaders and events grouped

together to be read at once

• flags, allows future expansion. Lots of probles with

syscalls without flags option, leads to thing like mmap2

etc.

16



Types of monitoring

• aggregate

• statistical sampling

• self-monitoring

17


