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Announcements

• HW#5 returned

• HW#6 and HW#7 posted soon
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Linux graphic interface

• originally, none. VGA Text only

X11 drove software directly.

• Attempt at GGI/KGI, Linus nixed it

• Framebuffer devices got in. Why? Well some machines

had no textmode without it

• Gradually the DRI interface (Direct Rendering Interface)

started providing abstractions needed for modern video
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cards.

DRI1/DRI2/DRI3

DRM – event queueing?

KMS – kernel mode setting

GEM/TTM – memory allocation

MESA3D – handles OpenGL translation
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Higher Level

• X11 – client/server, network transparent

MIT, 1984

• Wayland – Compositing Manager is mandatory

Draw to an offscreen buffer, window manager copy to

screen

Can have 3d compositor, fancy effects
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Even Higher

• Libraries like Qt, Gtk, (historically Motif)

• Desktops like KDE, GNOME, XFCE
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Raspberry Pi Framebuffer

• Pi can do advanced 3D GPU graphics.

Not documented well (but getting better)

But it is complex, more than we need for a simple OS

• The GPU firmware does provide for a simple flat

framebuffer mode if you ask it nicely
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Raspberry Pi Mailbox Interface

• How the ARM CPU communicates with the GPU that

really run things

• Mailbox channels: MAILBOX POWER 0

MAILBOX FRAMEBUFFER 1

MAILBOX VIRT UART 2

MAILBOX VCHIQ 3

MAILBOX LED 4

MAILBOX BUTTONS 5

MAILBOX TOUCHSCREEN 6
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• Mailbox
Address Size Name Description R/ W

0x2000b880 4 Read Receive mail R

0x2000b890 4 Poll Check mail R

0x2000b894 4 Sender Sender info R

0x2000b898 4 Status Infor R

0x2000b89c 4 Config Settings RW

0x2000b8a0 4 Write Send mail W

• to send to a mailbox:

– sender waits until the Status field has a 0 in the
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MAIL FULL bit

– sender writes to Write such that the lowest 4 bits are

the mailbox to write to, and the upper 28 bits are the

message to write.

• To read a mailbox:

– receiver waits until the Status field has a 0 in the

MAIL EMPTY

– receiver reads from Read.

– receiver confirms the message is for the correct

mailbox, and tries again if not.
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• Talk to GPU through this mailbox interface. Lots of

things set in it (the GPU is in control on Pi). Things

like power, clock enables, etc.
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Raspberry Pi Framebuffer Interface

• You can send it an address to a piece of memory to use

as a framebuffer and it will draw it to the screen over

HDMI.
• struct frame_buffer_info_type {

int phys_x ,phys_y; /* IN: Physical Width / Height */

int virt_x ,virt_y; /* IN: Virtual Width / Height */

int pitch; /* OUT: bytes per row */

int depth; /* IN: bits per pixel */

int x,y; /* IN: offset to skip when copying fb */

int pointer; /* OUT: pointer to the framebuffer */

int size; /* OUT: size of the framebuffer */

};

• Write the address of FrameBufferInfo + 0x40000000 to

11



mailbox 1 (40000000 means don’t cache)

Read the result from mailbox 1. If it is not zero, we

didn’t ask for a proper frame buffer.

GPU firmware returns a framebuffer you can write to.

Copy our images to the pointer, and they will appear on

screen!
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Using a Framebuffer

• How big is it?

• Why might it not just be X*Y*(bpp/8) bytes big?

Alignment issues? Powers of two? Weird hardware

reasons?

• Things like R/G/B order, padding bits, bits grouped

together (on Apple II groups of 7 bytes), etc

• Otherwise it’s just an exercise is calculating start address

and then copying values
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• How do you calculate colors?
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Putting a Pixel

• Depends a bit on the graphics mode you request

• For simplicity, request 800x600x24-bit

• Get back pointer, size, pitch

• Each X row has R,G,B bytes repeated for each pixel

• To get to next row increment by pitch value (bytes per

row)

fb[(x*3)+(y*pitch)]=r
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fb[(x*3)+(y*pitch)+1]=g

fb[(x*3)+(y*pitch)+2]=b

• pitch returned by the GPU. Normally it would just be

(maxy*bpp)/8, but it can vary depending on how the

hardware arranges the bits.
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Drawing a Gradient

• Just draw a horizontal line, incrementing the color for

each line
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Console Display

• Font / VGA Fonts

• console framebuffer. Color?

• scrolling

• backspace

• ANSI emulation
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Bitmapped Font

• Each character an 8x8 (or 8x16, or similar) pattern

• unsigned char smiley [8]={

0x7e , /* ****** */

0x81 , /* * * */

0xa5 , /* * * * * */

0x81 , /* * * */

0xa5 , /* * * * * */

0x99 , /* * ** * */

0x81 , /* * * */

0x7e , /* ****** */

};

void put_smiley(int xoff , int yoff , int color) {

for(y=0;y<8;y++) {

for(x=0;x<8;x++) {

if (simley[y]&(1<<(7-x))) {

putpixel(color ,x+xoff ,y+yoff);
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}

}

}

}

• Can find source of fonts online, VGA fonts. Just a binary

set of bitmapped characters indexed by ASCII code.

• Usually 8x16 though; the custom font used in the

homework is a hand-made 8x8 one
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