ECE 598 — Advanced Operating

Systems
Lecture 19

Vince Weaver
http://www.eece.maine.edu/~vweaver

vincent .weaver@maine.edu

9 April 2015

Announcements

e HW=£5 returned

e HW+#6 and HW#7 posted soon

Linux graphic interface

e originally, none. VGA Text only
X11 drove software directly.

e Attempt at GGI/KGI, Linus nixed it

e Framebuffer devices got in. Why? Well some machines
had no textmode without it

e Gradually the DRI interface (Direct Rendering Interface)
started providing abstractions needed for modern video

-y)

cards.

DRI1/DRI2/DRI3

DRM — event queueing?

KMS — kernel mode setting

GEM/TTM — memory allocation
MESA3D — handles OpenGL translation

Higher Level

e X11 — client/server, network transparent
MIT, 1984

e Wayland — Compositing Manager is mandatory
Draw to an offscreen buffer, window manager copy to
screen
Can have 3d compositor, fancy effects

Even Higher

e Libraries like Qt, Gtk, (historically Motif)

e Desktops like KDE, GNOME, XFCE

Raspberry Pi Framebuffer

e Pi can do advanced 3D GPU graphics.
Not documented well (but getting better)
But it is complex, more than we need for a simple OS

e The GPU firmware does provide for a simple flat
framebuffer mode if you ask it nicely

Raspberry Pi Mailbox Interface

e How the ARM CPU communicates with the GPU that
really run things

e Mailbox channels: MAILBOX_POWER 0
MAILBOX_FRAMEBUFFER 1
MAILBOX_VIRT_UART 2
MAILBOX_VCHIQ 3
MAILBOX_LED 4
MAILBOX_BUTTONS 5
MAILBOX_TOUCHSCREEN 6

-y ;

e Mailbox
Address Size Name Description R/ W

0x2000b880 4 Read Receive mail
0x2000b890 4 Poll Check mail
0x2000b894 4 Sender Sender info
0x2000b898 4 Status Infor
0x2000b89¢c 4 Config Settings RW
0x2000b8a0 4 Write Send mail W

A A A A

e to send to a mailbox:

— sender waits until the Status field has a 0 in the

-y 8

MAIL_FULL bit

— sender writes to Write such that the lowest 4 bits are
the mailbox to write to, and the upper 28 bits are the
message to write.

e [o read a mailbox:

— receiver waits until the Status field has a 0 in the
MAIL_LEMPTY

— receiver reads from Read.

— receiver confirms the message is for the correct
mailbox, and tries again if not.

-y 5

e Talk to GPU through this mailbox interface. Lots of
things set in it (the GPU is in control on Pi). Things
like power, clock enables, etc.

/Y 10

Raspberry Pi Framebuffer Interface

e You can send it an address to a piece of memory to use
as a framebuffer and it will draw it to the screen over

HDMI.

® struct frame_buffer_info_type {

int
int
int
int
int
int
int

phys_x ,phys_y;
virt_x,virt_y;
pitch;

depth;

X,¥;

pointer;

size;

/ *
/ *
/ *
/ *
/ *
/ *
/ *

IN:
IN:
OUT :
IN:
IN:
OUT:
OUT :

Physical Width / Height*/
Virtual Width / Height x/

bytes per row */
bits per pixel x*/
offset to skip when copying fb */
pointer to the framebuffer x/
size of the framebuffer x*/

e \Write the address of FrameBufferInfo -+ 0x40000000 to

11

mailbox 1 (40000000 means don't cache)
Read the result from mailbox 1. If it is not zero, we

didn't ask for a proper frame buffer.
GPU firmware returns a framebuffer you can write to.

Copy our images to the pointer, and they will appear on
screen!

/Y 12

Using a Framebuffer

e How big is it?

e Why might it not just be X*Y*(bpp/8) bytes big?
Alignment issues? Powers of two? Weird hardware
reasons’?

e Things like R/G/B order, padding bits, bits grouped
together (on Apple Il groups of 7 bytes), etc

e Otherwise it's just an exercise is calculating start address
and then copying values

-y 13

e How do you calculate colors?

14

Putting a Pixel

e Depends a bit on the graphics mode you request

e For simplicity, request 800x600x24-bit

e Get back pointer, size, pitch

e Each X row has R,G,B bytes repeated for each pixel

e To get to next row increment by pitch value (bytes per
row)

fb[(x*3)+(y*pitch)|=r

-y 15

fb[(x*3)+(y*pitch)+1]=g
fb[(x*3)+(y*pitch)+2]=b

e pitch returned by the GPU. Normally it would just be
(maxy*bpp)/8, but it can vary depending on how the
hardware arranges the bits.

/Y 16

Drawing a Gradient

e Just draw a horizontal line, incrementing the color for
each line

-y 17

Console Display

e Font / VGA Fonts

e console framebuffer. Color?
e scrolling

e backspace

e ANSI emulation

18

Bitmapped Font

e Each character an 8x8 (or 8x16, or similar) pattern

® unsigned char smiley [8]={

Ox7e, / * % % %k %k % % *x /
0x81, / * * * * /
Oxab, / * * x k % * /
0x81, / * * * *x/
Oxab, / * *x % * ok *x /
0x99, / * * * % * *x/
0x81, / * * * * /
O0xT7e, / * % >k % %k k % *x/

};

void put_smiley(int xoff, int yoff, int color) {
for(y=0;y<8;y++) A{
for (x=0;x<8;x++) {
if (simleyl[yl&(1<<(7-x))) {
putpixel (color ,x+xoff ,y+yoff);

-y ® 1

}
}
+
}

e Can find source of fonts online, VGA fonts. Just a binary
set of bitmapped characters indexed by ASCII code.

e Usually 8x16 though; the custom font used in the
homework Is a hand-made 8x8 one

/Y 20

