
ECE 598 – Advanced Operating
Systems

Lecture 19

Vince Weaver

http://www.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

9 April 2015

Announcements

• HW#5 returned

• HW#6 and HW#7 posted soon

1

Linux graphic interface

• originally, none. VGA Text only

X11 drove software directly.

• Attempt at GGI/KGI, Linus nixed it

• Framebuffer devices got in. Why? Well some machines

had no textmode without it

• Gradually the DRI interface (Direct Rendering Interface)

started providing abstractions needed for modern video

2

cards.

DRI1/DRI2/DRI3

DRM – event queueing?

KMS – kernel mode setting

GEM/TTM – memory allocation

MESA3D – handles OpenGL translation

3

Higher Level

• X11 – client/server, network transparent

MIT, 1984

• Wayland – Compositing Manager is mandatory

Draw to an offscreen buffer, window manager copy to

screen

Can have 3d compositor, fancy effects

4

Even Higher

• Libraries like Qt, Gtk, (historically Motif)

• Desktops like KDE, GNOME, XFCE

5

Raspberry Pi Framebuffer

• Pi can do advanced 3D GPU graphics.

Not documented well (but getting better)

But it is complex, more than we need for a simple OS

• The GPU firmware does provide for a simple flat

framebuffer mode if you ask it nicely

6

Raspberry Pi Mailbox Interface

• How the ARM CPU communicates with the GPU that

really run things

• Mailbox channels: MAILBOX POWER 0

MAILBOX FRAMEBUFFER 1

MAILBOX VIRT UART 2

MAILBOX VCHIQ 3

MAILBOX LED 4

MAILBOX BUTTONS 5

MAILBOX TOUCHSCREEN 6

7

• Mailbox
Address Size Name Description R/ W

0x2000b880 4 Read Receive mail R

0x2000b890 4 Poll Check mail R

0x2000b894 4 Sender Sender info R

0x2000b898 4 Status Infor R

0x2000b89c 4 Config Settings RW

0x2000b8a0 4 Write Send mail W

• to send to a mailbox:

– sender waits until the Status field has a 0 in the

8

MAIL FULL bit

– sender writes to Write such that the lowest 4 bits are

the mailbox to write to, and the upper 28 bits are the

message to write.

• To read a mailbox:

– receiver waits until the Status field has a 0 in the

MAIL EMPTY

– receiver reads from Read.

– receiver confirms the message is for the correct

mailbox, and tries again if not.

9

• Talk to GPU through this mailbox interface. Lots of

things set in it (the GPU is in control on Pi). Things

like power, clock enables, etc.

10

Raspberry Pi Framebuffer Interface

• You can send it an address to a piece of memory to use

as a framebuffer and it will draw it to the screen over

HDMI.
• struct frame_buffer_info_type {

int phys_x ,phys_y; /* IN: Physical Width / Height */

int virt_x ,virt_y; /* IN: Virtual Width / Height */

int pitch; /* OUT: bytes per row */

int depth; /* IN: bits per pixel */

int x,y; /* IN: offset to skip when copying fb */

int pointer; /* OUT: pointer to the framebuffer */

int size; /* OUT: size of the framebuffer */

};

• Write the address of FrameBufferInfo + 0x40000000 to

11

mailbox 1 (40000000 means don’t cache)

Read the result from mailbox 1. If it is not zero, we

didn’t ask for a proper frame buffer.

GPU firmware returns a framebuffer you can write to.

Copy our images to the pointer, and they will appear on

screen!

12

Using a Framebuffer

• How big is it?

• Why might it not just be X*Y*(bpp/8) bytes big?

Alignment issues? Powers of two? Weird hardware

reasons?

• Things like R/G/B order, padding bits, bits grouped

together (on Apple II groups of 7 bytes), etc

• Otherwise it’s just an exercise is calculating start address

and then copying values

13

• How do you calculate colors?

14

Putting a Pixel

• Depends a bit on the graphics mode you request

• For simplicity, request 800x600x24-bit

• Get back pointer, size, pitch

• Each X row has R,G,B bytes repeated for each pixel

• To get to next row increment by pitch value (bytes per

row)

fb[(x*3)+(y*pitch)]=r

15

fb[(x*3)+(y*pitch)+1]=g

fb[(x*3)+(y*pitch)+2]=b

• pitch returned by the GPU. Normally it would just be

(maxy*bpp)/8, but it can vary depending on how the

hardware arranges the bits.

16

Drawing a Gradient

• Just draw a horizontal line, incrementing the color for

each line

17

Console Display

• Font / VGA Fonts

• console framebuffer. Color?

• scrolling

• backspace

• ANSI emulation

18

Bitmapped Font

• Each character an 8x8 (or 8x16, or similar) pattern

• unsigned char smiley [8]={

0x7e , /* ****** */

0x81 , /* * * */

0xa5 , /* * * * * */

0x81 , /* * * */

0xa5 , /* * * * * */

0x99 , /* * ** * */

0x81 , /* * * */

0x7e , /* ****** */

};

void put_smiley(int xoff , int yoff , int color) {

for(y=0;y<8;y++) {

for(x=0;x<8;x++) {

if (simley[y]&(1<<(7-x))) {

putpixel(color ,x+xoff ,y+yoff);

• 19

}

}

}

}

• Can find source of fonts online, VGA fonts. Just a binary

set of bitmapped characters indexed by ASCII code.

• Usually 8x16 though; the custom font used in the

homework is a hand-made 8x8 one

20

