
ECE 598 – Advanced Operating
Systems

Lecture 20

Vince Weaver

http://www.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

14 April 2015

Announcements

• HW#6 and HW#7 posted

1

Processes – a Review

• Multiprogramming – multiple processes run at once

• Context switch – each process has own program counter

saved and restored as well as other state (registers)

• OSes often have many things running, often in

background.

On Linux/UNIX sometimes called daemons

Can use top or ps to view them.

• Creating new: on Unix its fork/exec, windows

2

CreateProcess

• Children live in different address space, even though it

is a copy of parent

• Process termination: what happens?

Resources cleaned up. atexit routines run.

How does it happen?

exit() syscall (or return from main).

Killed by a signal.

Error

• Unix process hierarchy.

3

Parent and children, etc. not strictly possible to give

your children away, although init inherits orphans

• Process control block.

4

Process States

• Running – on CPU

• Ready – ready but no CPU available

• Blocked – waiting on I/O or resource

• Terminated

5

Threads

• Each process has one address space and single thread of

control.

• It might be useful to have multiple threads share one

address space

GUI: interface thread and worker thread?

Game: music thread, AI thread, display thread?

Webserver: can handle incoming connections then pass

serving to worker threads

Why not just have one process that periodically switches?

6

• Lightweight Process, multithreading

• Implementation:

Each has its own PC

Each has its own stack

• Why do it?

shared variables, faster communication

multiprocessors?

mostly if does I/O that blocks, rest of threads can keep

going

allows overlapping compute and I/O

7

• Problems:

What if both wait on same resource (both do a scanf

from the keyboard?)

On fork, do all threads get copied?

What if thread closes file while another reading it?

8

Common Thread Routines

• pthreads

thread init()

thread create() – specify function

thread exit()

thread yield() – if cooperative

9

Thread Implementations

• Cause of many flamewars over the years

10

User-Level Threads (N:1 one process many
threads)

• Benefits

– Kernel knows nothing about them. Can be

implemented even if kernel has no support.

– Each process has a thread table

– When it sees it will block, it switches threads/PC in

user space

– Different from processes? When thread yield() called

it can switch without calling into the kernel (no slow

11

kernel context switch)

– Can have own custom scheduling algorithm

– Scale better, do not cause kernel structures to grow

• Downsides

– How to handle blocking? Can wrap things, but not

easy. Also can’t wrap a pagefault.

– Co-operative, threads won’t stop unless voluntarily give

up.

Can request periodic signal, but too high a rate is

inefficient.

12

Kernel-Level Threads (1:1 process to
thread)

• Benefits

– Kernel tracks all threads in system

– Handle blocking better

• Downsides

– Thread control functions are syscalls

– When yielding, might yield to another process rather

than a thread

13

– Might be slower

14

Hybrid (M:N)

• Can have kernel threads with user on top of it.

• Fast context switching, but can have odd problems like

priority inversion.

15

Green Threads

• Managed by virtual machine

• Java

16

Misc

• Pop-up threads? Thread created for incoming message?

• adding multithreading to code?

How to handle global variables (errno?)

Thread-safe functions. Is strtok thread-safe? malloc?

any routine that might not be re-entrant

How are multiple stacks handled? One option each

thread gets own copy of global variables. This can’t

be expressed by default in C, you need special routines,

thread-local variables.

17

POSIX Threads (pthreads)
#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

#include <assert.h>

#define NUM_THREADS 10

void *perform_work(void *argument) {

int value;

value = *((int *) argument);

printf("Thread with argument %d!\n", value);

return NULL;

}

int main(int argc , char **argv) {

pthread_t threads[NUM_THREADS];

int thread_args[NUM_THREADS];

18

int result , i;

/* create threads one by one */

for (i = 0; i < NUM_THREADS; i++) {

thread_args[i]=i;

printf("Main: creating thread %d\n", i);

result = pthread_create (& threads[i],

NULL , perform_work , (void *) &thread_args[i]);

if (result !=0) {

fprintf(stderr ,"ERROR!\n");

return -1;

}

}

/* wait for each thread to complete */

for (i = 0; i < NUM_THREADS; i++) {

/* block until each thread completes */

result = pthread_join(threads[i], NULL);

printf("MAIN: thread %d has completed\n", i);

if (result !=0) {

fprintf(stderr ,"ERROR!\n");

return -1;

}

}

19

printf("MAIN: All threads completed successfully\n");

return 0;

}

20

POSIX Threads (pthreads) programming

• Pass -pthread to gcc

• Thread management

– pthread create (thread,attr,start routine,arg)

– pthread exit (status)

– pthread cancel (thread)

– pthread attr init (attr)

– pthread attr destroy (attr)

– pthread join (threadid,status) – blocks thread

21

until specified thread finishes

– pthread detach (threadid)

– pthread attr setdetachstate (attr,detachstate)

– pthread attr getdetachstate (attr,detachstate)

– pthread attr getstacksize (attr, stacksize)

– pthread attr setstacksize (attr, stacksize)

– pthread attr getstackaddr (attr, stackaddr)

– pthread attr setstackaddr (attr, stackaddr)

• Mutexes (synchronization)

– pthread mutex init (mutex,attr)

22

– pthread mutex destroy (mutex)

– pthread mutexattr init (attr)

– pthread mutexattr destroy (attr)

– pthread mutex lock (mutex)

– pthread mutex trylock (mutex)

– pthread mutex unlock (mutex)

• Condition Variables – another way to synchronize

• Synchronization

23

Linux

• Posix Threads

• Originally used only userspace implementations. GNU

portable threads.

• LinuxThreads – use clone syscall, SIGUSR1 SIGUSR2 for

communicating.

Could not implement full POSIX threads, especially with

signals. Replaced by NPTL

Hard thread-local storage

24

Needed extra helper thread to handle signals

Problems, what happens if helper thread killed? Signals

broken? 8192 thread limit? proc/top clutter up with

processed, not clear they are subthreads

• NPTL – New POSIX Thread Library

Kernel threads

Clone. Add new futex system calls. Drepper and Molnar

at RedHat

Why kernel? Linux has very fast context switch

compared to some OSes.

Need new C library/ABI to handle location of thread-

25

local storage

On x86 the fs/gs segment used. Others need spare

register.

Signal handling in kernel

Clone handles setting TID (thread ID)

exit group() syscall added that ends all threads in

process, exit() just ends thread.

exec() kills all threads before execing

Only main thread gets entry in proc

26

