
ECE 598 – Advanced Operating
Systems

Lecture 23

Vince Weaver

http://www.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

23 April 2015



Announcements

• HW#8 will be out as soon as possible

1



Memory Barriers

• Not a lock, but might be needed when doing locking

• Modern out-of-order processors can execute loads or

stores out-of-order

• What happens a load or store bypasses a lock instruction?

• Processor Memory Ordering Models, not fun

2



Resources

• If you do not give exclusive access, bad things can

happen. Imagine one process printing a document, half

done and another task switched in and also starts writing

to the printer.

• Pre-emptible resource

• Non-preemptible resource.

• Usually protected by locks.

3



• More complex if protected by two or more locks (need

two resources)

4



Deadlock

• Two processes both waiting for the other to finish, get

stuck

• One possibility is a bad combination of locks, program

gets stuck

• P1 takes Lock A. P2 takes Lock B. P1 then tries to take

lock B and P2 tries to take Lock A.

5



Livelock

• Processes change state, but still no forward progress.

• Two people trying to avoid each other in a hall.

• Can be harder to detect

6



Starvation

• Not really a deadlock, but if there’s a minor amount

of unfairness in the locking mechanism one process

might get “starved” (i.e. never get a chance to run)

even though the other processes are properly taking and

freeing the locks.

7



How to avoid Deadlock

• Don’t write buggy code

• Reboot the system

• Kill off stuck processes

• Pre-emption (let one of the stuck processes run anyway)

• Rollback (checkpoint occasionally)

8



Priority Inversion

• Low-importance task interrupts a high-priority one

• Say you have a camera. Low-priority job takes lock to

take picture.

• High-priority task wants to use the camera, spins waiting

for it to be free. But since it is high-priority, the low

priority task can never run to free the lock.

9



Locking in your OS

• When?

• Interrupts

• Multi-processor

• Pre-emptive kernel (used for lower latencies)

• Big-kernel lock? Fine-grained locking? Transactional

memory?

10



• Semaphores? Mutexes

• Linux futexes?

11



Does our OS need locks?

• We don’t have many shared resources yet.

• Setting/reading the time, if not-atomic and updated by

interrupt

• What if multiple processes try to write the console at

the same time?

12



Scheduling

• Picks which jobs to run when

• Complex problem

• Simple: batch scheduling. Each run to completion.

• Multi-tasking.

• Computation often mixed with slow I/O

• Avoid context switching if possible

13



• Can switch when task voluntarily yields, if kernel blocks

on I/O, or if timeslice runs out

• Simple round-robin scheduling

• Different type of processes. Long-running CPU bound

where extra latency doesn’t matter? Interactive things

like GUI interfaces, video games, music playing where

too much delay is bad? Real time constraints?

14



Scheduling Goals

• All: fairness, balance

• Batch: throughput (max jobs/hour), turnaround (time

from submission to completion), CPU utilization (want

it busy)

• Interactive: fast response, doesn’t annoy users

• Real-time: meet deadlines, determinism

15



Batch Scheduling

• First-come-first-served (what if 2-day long job submitted

first)

• Shortest job first

• Many others

16



Interactive Scheduling

• Round-robin

• Priority – “nice” on UNIX

• Multiple Queues

• Others (shortest process, guaranteed, lottery)

• Fair scheduling – per user rather than per process

17



Real-time Scheduling

• Complex, more examples in 471 or real time OS course

18



The Linux Scheduler

• People often propose modifying the scheduler. That is

tricky.

• Scheduler picks which jobs to run when.

• Optimal scheduler hard. What makes sense for a long-

running HPC job doesn’t necessarily make sense for an

interactive GUI session. Also things like I/O (disk) get

involved.

• You don’t want it to have high latency

19



• Linux originally had a simple circular scheduler. Then

for 2.4 through 2.6 had an O(N) scheduler

• Then in 2.6 until 2.6.23 had an O(1) scheduler

(constant time, no many how many processes).

• Currently the “Completely Fair Scheduler” (with lots of

drama). Is O(log N). Implementation of “weighted fair

queuing”

• How do you schedule? Power? Per-task (5 jobs,

each get 20%). Per user? (5 users, each get 20%).

20



Per-process? Per-thread? Multi-processors? Hyper-

threading? Heterogeneous cores? Thermal issues?

21


