
ECE 598 – Advanced Operating
Systems

Lecture 24

Vince Weaver

http://www.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

28 April 2015



Announcements

• HW#8 was posted; very short multiple choice, due

Thursday before class

• HW#9 will be coding, but simple.

• There will be no HW#10 in the end

1



Review of the HW#9 Code

• Currently we have a glorified bootloader.

• What was needed to get it running applications?

• Needed to move our “shell” to a separate application.

– Needed to write a C library

– C library had to use only syscalls (no longer can just

call kernel routines, printk, etc).

– Compile a -fPIC binary. Use objcopy to create raw

binary. No flat file format, too hard.

2



– Include it as a binary blob in the executable (use �xxd

-i and #include it)

• Need to load our shell

– Need to allocate memory!

– Detect memory at boot, break into chunks

– Have a memory free bitmap for all of memory

– Mark the kernel as reserved

– Have an allocate routine that finds free memory.

• Need to execute our shell

– Copy the blob to the memory we allocated

3



– Allocate a userspace stack for it to use

– Point the userspace PC to the memory we allocated

– Switch to userspace!

• Now we have something about as powerful as DOS!

• What was done next?

• Need to go multi-tasking

– Most issues have to do with stack being wrong. Really

hard to debug w/o memory protection, and mostly

works while silently corrupting things.

4



– Another issue was properly saving/restoring registers

on context switch. Turns out to be a pain to do this in

C, had to re-write the IRQ handler to be all in assembly

– Need to speed up timer interrupt

Not strictly necessary, currently

– Implement system time

time syscall

– Need to set up process table and have list of processes

Done

– Need to implement scheduler to switch between them

Done, simple round-robin

5



– Need way to make process runnable.

Custom run syscall, also stop syscall.

– Switching to userspace leaks stack, how to avoid that.

– Idle task that just runs wfi forever. Need to have

something to run if all other tasks are blocked.

• Still TODO

– Properly only schedule idle task when idle

– Blocking I/O

How to implement?

– Interrupt driven serial port

6



– PS/2 GPIO keyboard support

– Implement nanosleep system call

– Some sort of filesystem

– Exiting a process (and freeing memory)

7



Multi-Processing

• Multi-processing

Symmetric, Asymmetric

SMP vs CMP (Symmetric and Chip Multi-processing)

• Multi-threading

(Hyperthreading, SMT)

• Bus (small amounts) – for memory just puts request on

the bus. If busy it waits. Why can this be bad if large

8



CPUs?

Cache – each CPU has local cache. Have to keep

cache coherent though. Large (¿16?) traditional

cache coherence doesn’t scale well. Then use crossbars,

switching networks. Gets more complex.

• Shared memory vs Distributed

Shared memory, a CPU can write a value to memory,

read it back and it will be different (another CPU can

write to it)

• UMA, NUMA, CC-NUMA (cache-coherent)

9



Non-uniform memory access

• How many copies of the OS? One per core or single

image? One per core is more like a cluster.

10



Multi-Processor Resource Sharing

• How are resources shared in SMP system?

• Any core can access any of the devices. Need locking.

• What about interrupts?

– Have one core handle all interrupts?

Might have better cache behavior

– Round-robin interrupts to each core?

Reduces load on core0 but hurts others.

11



– Balance interrupt load across processors?

12



OS Support for SMP

• How can we have multiple cores share one OS-image?

• Big-kernel-lock, but poor performance

• Only parts of OS happen at once. Scheduler can run at

same time as say serial driver or filesystem read or page

fault

• Split up with fine-grained critical sections.

• Suddenly deadlocks are a problem.

13



• What kinds of locks?

– Spinning easiest, but poor performance.

– Switch threads. Multi-threading OS?

– Linux has kernel threads (look in top for things starting

with k or rcu). Interrupt handlers have fast handler

and worker threads.

14



SMP Scheduling

• 4 processors, 5 jobs

How to avoid ping-ponging? Better to make two

processes slow or all of them?

• Gang scheduling – if you have processes that are using

IPC (or multithreads) you want to schedule all at the

same time so can communicate without having to wait

through multiple context switches.

• Keeping jobs on same CPU started on (why is this

15



good?) Cache behavior. TLB, NUMA.

Why might you want to move them?

• When might you want to run everything on one core

even though lots available? Power! Can put rest of

CPUs to sleep.

• How do you online/offline hotswap processors.

16



Initializing SMP on ARM

• Detecting the processors

• Need to power them up

• Then need to somehow (implementation dependent) set

the PC for each

• Typically leave them waiting in WFE (similar to WFI but

also will wait for SEV event). SEV sends event to all

cores waking any in WFE state.

17



• On x86 IPI (inter-processor interrupts) are used during

bringup

18


