
Creating Small Standalone Raspberry Pi Images
ECE598: Advanced Operating Systems – Homework 2

Spring 2016

Due: Thursday, 4 February 2016, 9:30am

This homework is meant to get you started with the Raspberry Pi and writing simple self-contained programs.

1. Install a Cross-Compile Toolchain

• A good reference on how to do this can be found here:
http://www.cl.cam.ac.uk/projects/raspberrypi/tutorials/os/downloads.html

• For Linux there are various alternate ways to install an ARM toolchain if you don’t want to
download the files as described in the link above. Feel free to use whatever works.

• For OSX follow the instructions. You might have to install xcode to get make installed (on newer
OSX it will prompt you to do this automatically if you try to run make at the command line).

• I have not personally tested the Windows instructions, however I know people successfully used
it last year.

2. Download the homework code template

• Download the code from:
http://web.eece.maine.edu/~vweaver/classes/ece598_2016s/ece598_hw2_code.tar.gz

• Uncompress the code (on Linux or Mac you can just tar -xzvf ece598_hw2_code.tar.gz)

Model B

ACT

Camera

Pin1 Pin2

Composite

Audio

HDMI

Power

Pin25 Pin26

Ethernet

USB

Model B+

Audio/Video

ACT

Pin1 Pin2

Ethernet

USB USB

Power

HDMI

Model A+

Audio/Video

ACT

Pin1 Pin2

Power

HDMI

USB

Figure 1: Raspberry Pi Layout

3. Modify the Assembly program to Blink the ACT LED

• We went over how to do this in class. For reference view the GPIO related code in the
BCM2835-ARM-Peripherals.pdf manual that can be found linked on the course website.

http://www.cl.cam.ac.uk/projects/raspberrypi/tutorials/os/downloads.html
http://web.eece.maine.edu/~vweaver/classes/ece598_2016s/ece598_hw2_code.tar.gz


• If you are using a Raspberry Pi Model B then you turn on the LED by setting GPIO16 Low. If
you are using a Raspberry Pi Model B+ or A+ then you turn on the LED by setting GPIO47
High. You can look at Figure 1 to see what kind of Pi you have if you don’t know.

• Modify the blink_as,.s file so that it blinks the LED. (Look for “your code here” references).
As a reminder, you will need to enable the proper GPIO, turn on the LED, delay (0x3f0000 is a
good amount to loop), turn off the LED, delay again, then loop back so the LED blinks forever.

• Be sure to comment your code!

4. Build the Assembly Program

• Run “make”. You may need to modify the Makefile so that the CROSS variable is prepended by
the directory where you install the cross compiler. For example, if you you are using the yagarto
cross-compiler, you will update the line to look something like:
CROSS = ∼/yagarto/yagarto-4.7.2/bin/arm-none-eabi-

• If all goes well it should create a blink_asm.img file.

5. Install on the SD card and Test

• Insert your SD card. I’m assuming you have one formatted with Raspbian. (Note, to be safe you
might want to use an SD card that doesn’t have anything else important on it).

• You should be able to find the boot partition, which is a fat partition that should already have a
kernel.img there. On Mac it helpfully automounts as a drive called “Boot”. On Linux depending
on what version you are running you may have to mount it by hand (it will be the first partition
on the drive, something like /dev/sdb1) and you might have to be root or use sudo to copy the file
into place.

• *IMPORTANT* Backup your kernel.img file. Make a copy (call it kernel.img_good or
something like that). You will need this if you ever want to boot your Pi back into Linux again.

• Copy the blink_asm.img file you build over top of kernel.img on the SD card. (Make
sure you over-write kernel.img, you can’t just copy blink_asm.img there.)

• Safely unmount the SD card.

• Place it in your Raspberry Pi. Apply power to the Pi. If all goes well the ACT light should be
blinking. If not, check your code!

• To be safe you should probably remove power to your Pi before removing the SD card again.

6. Modify the C program to Blink the ACT LED

• Modify the blink_c.c code to blink the ACT light.

• Be sure to comment your code!

• Running “make” should build the code

7. Install on the SD card and Test

• Do this the same way you did for the assembly version. This time copy the blink_c.img file
overtop of kernel.img. Be sure you are properly over-writing the file.

2



8. Answer the following questions
Put your answers to the following questions in the README text file.

(a) Measure the size of your .img files for the assembly and C versions (If you’re on Linux/OSX
you can use ls -l (that’s a lower-case L) to get filesize). Which is bigger? Why? How does it
compare in size to the Linux kernel.img that you backed up?

(b) What is the purpose of the C volatile keyword?

(c) In blink_c.c GPIO_GPCLR0 is defined as 10 but in rpi_blink.s it is defined as 40
(0x28). Why is this different?

(d) Look at the BCM2835_ARM_Peripherals document, section 6.2. If we had accidentally set the
GPIO_GPFSEL1 register for GPIO16 usage to type ALT4, what mode would that pin have been
set to?

9. Submit your work

• E-mail me your solution. On Linux/OSX you can run make submit which will create a
hw2_submit.tar.gz file containing all of the source files plus the README with your
answers. Alternately, if you are on Windows and make submit doesn’t work then just create a
zip file of your solution directory.

3


