
ECE 598 – Advanced Operating
Systems
Lecture 3

Vince Weaver

http://www.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

26 January 2016

http://www.eece.maine.edu/~vweaver


Announcements

• HW#1 was posted, due on Thursday.

• Will have the loaner Pis ready soon.

1



Booting a System

• Why is it called booting?

• Most likely source is the idea of “Pulling oneself up by

ones bootstraps”, i.e., getting somewhere by starting

with nothing

2



Simple Booting

• Simplest systems have code in ROM.

The CPU initializes, points the Program Counter to a

known location, and starts executing.

• The STM32L boards in ECE271 do something similar;

code is in flash, reset vector (at offset 0) points at code

to start. press reset, runs reset vector, up to you to do

everything else.

3



Firmware

• Low-level code (often written in assembly language) that

initializes the system.

• Often in ROM/EEPROM/FLASH

• Boot firmware initializes system.

◦ Init RAM? Set it up (often over i2c), clear out random

or old contents (if a soft reboot). This part operates

without memory or stack to use, tricky.

◦ Init other hardware. I/O, serial ports, keyboard,

display, etc.

4



◦ Load code to boot. Where from? Hard-disk, floppy,

network (PXE), CD/DVD, USB, SD-card, etc. Old

days: tape, paper-tape, console switches?

• Might have other interfaces: boot selection/configuration

screen?

• Some firmware provides routines for hardware to use,

for things like accessing disks, writing to screen, reading

keyboard, initializing security, etc.

• Firmware development is hard. Not all corner-cases well

tested (can it boot Windows? Ship it). Kernel and

Firmware devels have antagonistic relationship.

5



Booting on x86

• Firmware

◦ BIOS original firmware. 16-bit. Dates back to CP/M

days. Provided booting and a library for accessing I/O.

(MS-DOS a thin layer over BIOS).

◦ These days EFI and uEFI replacing it, 32/64-bit.

Written in higher level language.

◦ Firmware provides other interfaces, like power

management, ACPI, device enumeration, etc.

◦ x86 firmware can use SMM mode which allows

6



secret/hidden code running behind the scenes for

things like hardware emulation (USB keyboards) and

power management.

• Firmware traditionally loaded a 512Byte bootsector (last

two bytes 0x55 0xAA) to 0x7c00 and jumped to it.

This “first stage” then had enough code to load a more

complex “second stage”

• The bootloader (GRUB is a common one on x86 Linux)

then loads the operating system. Provides nice graphical

interface often (to select images) and a console for

setting command line arguments and even browsing for

7



kernel images.

8



Loading Linux

• Linux is usually on disk, sometimes a separate boot

partition. Complicated because blocks might not be

contiguous on disk.

• Some Linux images can be loaded directly, without need

of bootloader.

• Linux image itself can be complex

◦ Linux image, “vmlinux” (why called that? historical,

unix, vm unix)

◦ decompresser and compressed image (zImage,

9



bzImage, uIMage, etc)

◦ When building, the kernel image is taken, stripped,

compressed. piggy “piggyback” code put on, as well

as decompressor. Originally floppy boot code stuck on

beginning as well.

◦ Different entry points. On x86 BIOS boots into 16-bit.

EFI and bootloaders can jump into 32/64

◦ So optionally boots in 16-bit mode. Switches to

32-bit mode. If 64-bit, optionally switch to 64-bit

Decompressed kernel to 0x10 0000 (might have to

move decompress code). (above 1MB. Why? 640k)

10



What about initrd?

◦ Jump to startup 32 / startup 64 function

◦ 16-bit code handles various stuff, gets memory size

from BIOS, etc

◦ 32/64 relies more on boot loader. Has specification

for how registers set up, etc.

◦ relocates decompression code if needed. Sets up stack,

clears BSS, Decompresses.

◦ relocate if needed. why? randomization is one.

◦ Memory map. Virtual mem. First 896M of physical

mem mirrored in top of 32-bit. Why? So kernel can

11



easily copy to/from. Can convert kernel virt to phys

with just subtraction. Complicated if more than that

much RAM, have to copy around. HIGHMEM.

◦ space above for vmalloc

◦ somewhat more complicated 64-bit

◦ kernel just an ELF executable

• Starts Userspace program “init” (old days simple

program and shell scripts, these days “systemd”)

• Sometimes an “initrd” is included too that has enough

drivers to get Linux going and a very minimal filesystem

to help with booting before disks/filesystem ready.

12



Disk Partitions

• Master Boot Record, Boot Sector

• Followed by partition table

• Way to virtually split up disk.

• DOS GPT – old partition type, in MBR. Start/stop

sectors, type

• Types: Linux, swap, DOS, etc

13



• GPT had 4 primary and then more secondary

• Lots of different schemes (each OS has own, Linux

supports many). UEFI more flexible, greater than 2TB

14



Bootloaders on ARM

• The most common is uBoot

• uBoot – Universal Bootloader, for ARM and other

embedded systems

• Almost like minimal OS

• More of a challenge to write a bootloader for a widely

nonstandardized architecture like ARM. (Why is ARM

so nonstandardized?)

15



Uboot Booting

• Most other ARM devices, ARM chip runs first-stage

boot loader (often MLO) and second-stage (uboot)

• FAT partition

Why FAT? (Simple, Low-memory, Works on most

machines, In theory no patents despite MS’s best

attempts (see exfat))

The boot firmware (burned into the CPU) is smart

enough to mount a FAT partition

16



Booting on typical ARM/uboot

• vmlinux. strip. compress. piggy / piggyback.

decompression code tacked on convert to zImage.

mkuimage converts to uimage suitable for booting with

uboot

• No bios really. Bootloader provides all info.

• Modern day Device Tree provides config info for hardware

(memory size, interrupts, what hardware is there). This

allows possibility of a kernel that will run on many ARM

17



boards (PI, beaglebone, pandaboard, etc) rather than

having to have a different hard-coded kernel for each

possible platform.

18



Kernel booting

• Initializes hardware. First part asm. Transition to C as

quickly as possible. First thing to initialize. Memory.

Then simple in/out. Enable keyboard, simple VGA, serial

console. So printk can work.

• Relocates decompression code

• Decompresses

• Parse the resulting ELF file.

19



• Apply any relocations

• Jump to entry point

20



Raspberry Pi Booting

• Unusual (and has changed over the past few years)

• Small amount of firmware on SoC

• ARM 1176 brought up inactive (in reset)

• Videocore loads first stage from ROM. Videocore actually

runs its own os (vcos) based on ThreadX RTOS.

• This reads bootcode.bin from fat partition on SD card

into L2 cache.

21



• This runs on videocore, enables SDRAM, then loads

start.elf

• This initializes things, the loads and boots Linux

kernel.img. (also reads some config files there first)

22



So how do we start with own OS?

• Make simple binary.

• Compile it with ARM toolchain (cross compile?)

• Replace kernel.img on your memory card.

• Boot into it!

• Easier said than done.

• What kind of setup do you have?

23


