
ECE 598 – Advanced Operating
Systems

Lecture 4

Vince Weaver

http://www.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

28 January 2016

http://www.eece.maine.edu/~vweaver


Announcements

• HW#1 was due

• HW#2 was posted, will be tricky

• Let me know if you need to borrow a Pi

1



Raspberry Pi

• One of the first, cheap, ARM development board

• Put out by the Raspberry Pi Foundation in England

• Meant for educational use, widely used by hobbyists

• Designed to get students interested in low-level

computing like the old days.

• Model names based on old BBC Micro computers

2



Raspberry Pi A/B/A+/B+ hardware

• BCM2835 SoC

• ARM1176 – v6, older than the v7 (Cortex A8, A9, A15)

• 700MHz (overclock?), 1-issue in-order, VFPv2 (no

neon), DSP

• 256MB-512MB RAM

• 16k 4-way l1 i/d cache, 128kb L2 controlled by vcore

(linux configs for cpu)

• VideoCore IV (24Gflops) GPU

• ARM32 and THUMB; no THUMB2

3



• Powered by USB-micro connector

• A models lack ethernet and have fewer USB

• Plus models have 40 pin GPIO header (instead of

26), better power converter, more USB, combined

video/sound port, re-arranged ports

• Zero model even more stripped down, mini-HDMI

4



BCM2835 features

• peripherals at 0x20000000 phys address

• uart and 2 spi

• bsc, aka i2c

• dma controller

• emmc

• gpio

• interrupts (mailbox, doorbell)

• pcm/i2s audio

• pwm

5



• spi

• spi/i2c slave

• system timer

• uart (serial port)

• arm timer

• usb

• video: hdmi?,composite

6



Raspberry Pi Model 2

• SoC (mostly) the same, but much faster processor

• Board layout just like B+

• BCM2836

• quad-core ARMv7 Cortex A7

• 1GB RAM (so all peripheral addreses move)

• Has THUMB2 support

7



Writing a standalone (bare-metal) Program

• Easy in assembler

• Some Extra work in C. Why?

8



Entry Point from Bootloader

• Execution starts at 0x8000

• Loader passes a few arguments, as in a function call.

Three arguments. As per ABI in r0,r1,r2

r0=device booted from (usually 0)

r1=arm chip identifier (3138 0xc42 on bcm2835)

r2=pointer to ATAGS (arm TAGS) which contains info

from bootloader, such as memory avail, etc.

9



Building

• You will need to set up a cross-compiler

Link to directions. Windows, OSX, Linux.

Have done the Linux and OSX versions. People last year

successfully did on Windows.

Old days much harder, had to compile gcc cross-compiler

from scratch, quite a pain.

• Then edit your code, then cross compile.

• Once the image is built, you will copy it to a memory key

that has Linux on it. On the /boot partition, over-write

10



the kernel.img file with your image.

• Then reboot.

• There are various ways/tools you can use to edit your

code so you might want to experiment. You can also

build the code ”natively” on a Pi but that would involve

some manner of transferring the file to get it on an SD

card.

• Unfortunately debugging is a pain if not working.

• Would be nice if we had a fancy bootloader that allowed

dual boot, but I was unable to find a good one.

11



Blinking an LED

• On Model B, GPIO16 is connected to the ACT LED

(active low)

• On Model B+/A+, it is GPIO47 (active high instead)

12



GPIOs

• See the peripheral reference available here:

http://web.eece.maine.edu/~vweaver/classes/ece598_2016s/

BCM2835-ARM-Peripherals.pdf

• Look in Chapter 6

• On the Pi, memory mapped I/O starts at 0x20000000

(512MB)

• The GPIO base is at 0x20200000 (the documentation

confusingly lists it as 0x7e200000, just replace the

leading 0x7e with 0x20).

13

http://web.eece.maine.edu/~vweaver/classes/ece598_2016s/BCM2835-ARM-Peripherals.pdf
http://web.eece.maine.edu/~vweaver/classes/ece598_2016s/BCM2835-ARM-Peripherals.pdf


Enabling a GPIO pin

• The GPFSEL registers let you enable the GPIO pins.

10 GPIOs per register (3 bits each). GPIO0 is GPFSEL0

bits 0-2, GPIO1 is GPFSEL0 bits 3-5, etc.

• A value of ‘0’ in GPFSEL makes it an input, ‘1’ enables

it for output (what do other values do?)

• GPIO16 is thus GPFSEL1, bits 18-21

GPIO47 is what? (GPFSEL4, bits 21-24)

14



Setting a GPIO value

• We want to toggle the LED, so set the GPIO line high

or low.

• GPSET registers used to set to 1. So to set GPIO16 to

on, set bit 16 of GPSET0 register.

• GPCLR registers used to set to 0. So to set GPIO16 to

off, write ’1’ to bit 16 of GPCLR0 register.

• Can do much fancier things. Set alternate functions

15



for the outputs, pullups, read values, level detect, etc.

Much like in ECE271.

16



ARM Assembly review

• ARM has 16 registers. r0 - r15. r15 is the program

counter. r14 is the stack pointer.

• arm32 has fixed 4-byte encoding (rpi also has THUMB

but we won’t be using that).

17



Defines

The .equ assembler directive is the equivalent of a C

#define
.equ GPIO_BASE , 0x20200000

.equ GPIO_GPFSEL1 , 0x04

.equ GPIO_GPSET0 , 0x1c

.equ GPIO_GPCLR0 , 0x28

18



Loading a Constant

You can use mov r0,#2048 to load small constants (#

indicates an immediate value). However long constants

won’t fit in the instruction coding. One way to load them

is to put = in front which tells the assembler to put the

value in a nearby area and do a PC-relative load.
ldr r0 ,= GPIO_BASE

19



Storing to a Register

There are always multiple ways to generate a constant. In

this example we want to shift 1 left by 24. A simple way

to do this is load the value, then logical shift left it to the

right position.

The str instruction stores a register to memory. The

second argument is the address; there are many possible

addressing modes, the one we are using adds a constant

offset to an address in a register.
mov r1 ,#1

lsl r1 ,#24

str r1 ,[r0 ,# GPIO_GPFSEL2]

20



Can you instead do mov r1,#(1<<24)?

21



Delaying

A simple way to create a delay is to just have a busy loop.

Move a value in, and then decrement the counter until

it hits zero. You can use a separate cmp instruction for

the compare, but ARM allows you to put “s” on the end

of an instruction to update flags. Thus below the sub

instruction will update the zero flag after each iteration,

and the bne branch-if-not-equal will check the zero flag

and loop properly.
mov r1 ,#65536

delay_loop:

subs r1,r1 ,#1

bne delay_loop

22



Looping Forever

Once our program ends we cannot exit like you normally

would; there’s no operating system to exit to. To prevent

the program just running off the end of the address space

we have an infinite loop. ARM processors support the wfe

instruction which will put the CPU in a low-power state

while waiting for something to happen. This will use less

power (hopefully) than an empty busy loop.
finished:

wfe /* wait for event */

b finished

23



More Blinking, Now in C

C is easier to program, but has more overhead.

Other things to note:

• Need to compile with -nostartfiles as no C library is

available.

• You need to provide own C library routines. No printf,

strcpy, malloc, anything like that.

• There needs to be boot code to set up the stack, initialize

the BSS, etc.

24



More Blinking, Now in C

You can set up some useful #define statements to make

the code easier to follow.
#define GPIO_BASE 0x20200000UL

#define GPIO_GPFSEL1 1

#define GPIO_GPSET0 7

#define GPIO_GPCLR0 10

25



Volatile!

The volatile keyword tells the compiler that this address

points to something that might change, so should actually

be read every time a read is indicated. An optimizing

compiler otherwise might notice two reads to an address

with no intervening store and optimize away the first read!

It may also optimize all but the last store if no intervening

reads!
volatile uint32_t *gpio;

26



Setting a value

You can treat memory as an array.
gpio[GPIO_GPFSEL1] |= (1 << 18);

27



Delays

If you want to use an empty delay loop like we do in

asm you’ll have to use volatile or otherwise find ways to

keep the compiler from optimizing it away.

gcc keeps getting better at this. Currently have to tell it

to not inline the code with void __attribute__ ((noinline)) delay(int length)

and then in the inner loop of your do-nothing function

you will want to put something like asm(""); which tells the

compiler not to optimize it away.

28



Building

• Linker script kernel.ld (tells linker where to put things,

sets up entry point, etc)

• By default an ELF executable is generated; the objcopy

program strip off extraneous ELF header stuff leaving

just the raw executable.

29


