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Announcements

• Homework #3 was assigned, due Thursday
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HW#2 Review

• Code problems: mostly delay too short or second delay

asm branching into first.

• Wasted lots of time tracking down obscure bug, where

the BSS wasn’t where I thought it would be. Literal

pools and linker scripts. Turned out to be a missing -c

in the Makefile.

• Size: C about 200 bytes, assembly 68 bytes?

Can look at .dis files for disassembly

C: 60 bytes of initialization, asm: 12 bytes for delay loop,
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on C is 56 bytes (due to pessimization from volatile, etc)

also saves/restores LR and registers to maintain calling

convention. can’t explain some of it

• volatile – have C compiler not optimize away stores

• C array of 32-bit ints vs actually byte-wise access

• SPI1 CEN 2. Bonus SPI ports
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Integer to String Conversion

This it the algorithm I use, there are other ways to do

it that don’t involve the backwards step (starting off by

dividing by 1 billion and dividing the divisor by 10 each

time).

• Repeatedly divide by 10.

• Digit is the remainder. Repeat until quotient 0.

• Make sure handle 0 case.

• Convert each digit to ASCII by adding 48 (’0’)

• Why does the number end up backwards?
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Division by 10

• ARM1176 in Pi has no divide routine, why isn’t this a

problem?

• Generic x=y/z division is not possible without fancy

work (iterative subtraction? Newton approximation?)

• Dividing by a constant is easier

• C compiler cheats, for /10 it effectively multiplies by

1/10.

5



• Look at generated assembly, you’ll see it multiply by

0x66666667

• Why is it not a problem when dividing by 16?

6



What are interrupts?

• What types of hardware generate interrupts?

Keyboard, timers, I/O, etc.

• What can an OS use interrupts for?

Avoiding polling. Also context switching.
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Exceptions and Interrupts

• All architectures are different

• ARM does it a little differently from others.

8



ARM CPSR Register

N Z C V

31 30 29 28 7 6 5 4 0

I F T Mode

Interrupt Masks
Thumb

Processor
Mode

Condition

  Flags

• Current Program Status Register

• Contains flags in addition to processor mode

• Six privileged modes: abort, fast interrupt, interrupt,

supervisor, system, undefined

• One non-privileged: user (cannot write CPSR)

• Interrupts and exceptions will automatically switch

modes
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ARM Interrupt Registers
User/Sys Fast IRQ Supervisor Undefined Abort

r0
r1
r2
r3
r4
r5
r6
r7

r8 r8 fiq
r9 r9 fiq

r10 r10 fiq
r11 r11 fiq
r12 r12 fiq

r13/sp r13 fiq r13 irq r13 svc r13 undef r13 abt
r14/lr r14 fiq r13 irq r14 svc r14 undef r14 abt
r15/pc

cpsr spsr fiq spsr irq spsr svc spsrc undef spsr abt

Unlike other architectures, when switching modes the ARM
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hardware will preserve the status register, PC and stack and

give you mode-specific versions (register bank switching).

Also for Fast Interrupts r8-r12 are saved as well, allowing

fast handlers that do not have to save registers to the

stack.
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ARM Interrupt Handling

• ARM core saves CPSR to the proper SPSR

• ARM core saves PC to the banked LR (possibly with an

offset)

• ARM core sets CPSR to exception mode (disables

interrupts)

• ARM core jumps to appropriate offset in vector table
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Vector Table

Type Type Offset LR Priority

Reset SVC 0x0 – 1

Undefined Instruction UND 0x04 lr 6

Software Interrupt SVC 0x08 lr 6

Prefetch Abort ABT 0x0c lr-4 5

Data Abort ABT 0x10 lr-8 2

UNUSED – 0x14 – –

IRQ IRQ 0x18 lr-4 4

FIQ FIQ 0x1c lr-4 3
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• See ARM ARM ARMv6 documentation for details.

• Defaults to 0x000000. On some ARM you can move to

any 32-byte aligned address.

• Interrupts: IRQ = general purpose hardware,

FIQ = fast interrupt for really fast response (only 1),

SWI = syscalls, talk to OS

• FIQ mode auto-saves r8-r12.

• Different stacks? IRQ mode, SVC mode (boots into),

user-mode stack
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Ways to return from IRQ

• subs pc,r14,#4

Sneakily branches and gets the right status register (due

to S in SUBS)

• sub r14,r14,#4

. . .

movs pc,r14

• Another stores lr and other things to stack, then restores

sub r14,r14,#4
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stmbd r13!,{r0-r12,r14}
. . .

ldmfd r13!,{r0-r12,pc}^
The caret means to loast cpsr from spsr

Exclamation point means to update r13 after popping.
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IRQ Handlers in C

In gcc for ARM, you can specify the interrupt type with

an attribute. Automatically restores to right address.
void function () __attribute__ (( interrupt ("IRQ")));

/* Can be IRQ , FIQ , SWI , ABORT and UNDEF */

void __attribute__ (( interrupt("UNDEF"))) undefined_instruction_vector(void) {

while (1) {

/* Do Nothing */

}

}
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