ECE 598 — Advanced Operating

Systems
Lecture 7

Vince Weaver
http://www.eece.maine.edu/~vweaver

vincent .weaver@maine.edu

O February 2016

http://www.eece.maine.edu/~vweaver

Announcements

e Homework #£3 was assigned, due Thursday

HW#2 Review

e Code problems: mostly delay too short or second delay
asm branching into first.

e Wasted lots of time tracking down obscure bug, where
the BSS wasn't where | thought it would be. Literal
pools and linker scripts. Turned out to be a missing -c
in the Makefile.

e Size: C about 200 bytes, assembly 68 bytes?

Can look at .dis files for disassembly
C: 60 bytes of initialization, asm: 12 bytes for delay loop,

-y)

on C is 56 bytes (due to pessimization from volatile, etc)
also saves/restores LR and registers to maintain calling
convention. can't explain some of it

e volatile — have C compiler not optimize away stores

e C array of 32-bit ints vs actually byte-wise access
e SPI1_CEN_2. Bonus SPI ports

Integer to String Conversion

This 1t the algorithm | use, there are other ways to do
it that don’'t involve the backwards step (starting off by
dividing by 1 billion and dividing the divisor by 10 each
time).

e Repeatedly divide by 10.

e Digit is the remainder. Repeat until quotient O.
e Make sure handle 0 case.

e Convert each digit to ASCII by adding 48 ('0’)
e \Why does the number end up backwards?

-y 4

Division by 10

e ARM1176 in Pi has no divide routine, why isn't this a
problem?

e Generic x=y/z division is not possible without fancy
work (iterative subtraction? Newton approximation?)

e Dividing by a constant Is easier

e C compiler cheats, for /10 it effectively multiplies by
1/10.

-y 5

e L ook at generated assembly, you'll see it multiply by
0x66666667

e Why is it not a problem when dividing by 167

What are interrupts?

e \What types of hardware generate interrupts?
Keyboard, timers, 1/0, etc.

e What can an OS use interrupts for?
Avoiding polling. Also context switching.

Exceptions and Interrupts

e All architectures are different

e ARM does it a little differently from others.

ARM CPSR Register

31 30 29 28 7 6 5 4 0

N(Z|C |V I F|T Mode

Processor

Condition Interrupt Masks f Mode

Flags Thumb

e Current Program Status Register

e Contains flags in addition to processor mode

e Six privileged modes: abort, fast interrupt, interrupt,
supervisor, system, undefined

e One non-privileged: user (cannot write CPSR)

e Interrupts and exceptions will automatically switch
modes

-y 9

ARM Interrupt Registers

User/Sys Fast IRQ Supervisor Undefined Abort
r0
rl
r2
r3
rd
rb
ro
rf
r8 r8_fiq
r9 r9_fiq
rl0 r10_fiq
rll r11_fiq
r12 r12_fiq
r13/sp r13_fiq r13_irq r13_svc r13_undef r13_abt
r14/Ir r14_fiq r13_irq r14 _svc r14_undef r14_abt
r15/pc
cpsr spsr_fiq spsr_irq Spsr_svc spsrc_undef | spsr_abt

Unlike other architectures, when switching modes the ARM

/Y 10

hardware will preserve the status register, PC and stack and
give you mode-specific versions (register bank switching).
Also for Fast Interrupts r8-r12 are saved as well, allowing
fast handlers that do not have to save registers to the

stack.

/Y 11

ARM Interrupt Handling

e ARM core saves CPSR to the proper SPSR

e ARM core saves PC to the banked LR (possibly with an
offset)

e ARM core sets CPSR to exception mode (disables
interrupts)

e ARM core jumps to appropriate offset in vector table

-y 12

Vector Table

Type Type | Offset | LR | Priority
Reset SVC | 0x0 — 1
Undefined Instruction | UND | 0x04 | Ir 6
Software Interrupt | SVC | 0x08 | Ir 0
Prefetch Abort ABT | OxOc | Ir-4 5
Data Abort ABT | 0x10 | Ir-8 2
UNUSED — Ox14 | - —
IRQ IRQ | 0x18 | Ir-4 4
FIQ FIQ | Oxlc |Ir-4 3

13

e See ARM ARM ARMv6 documentation for details.

e Defaults to 0x000000. On some ARM you can move to
any 32-byte aligned address.

o Interrupts: IRQ = general purpose hardware,
FIQ = fast interrupt for really fast response (only 1),
SWI = syscalls, talk to OS

e FIQ mode auto-saves r8-r12.

e Different stacks? IRQ mode, SVC mode (boots into),
user-mode stack

-y 14

Ways to return from IRQ

e subs pc,rl4d, #4
Sneakily branches and gets the right status register (due
to S in SUBS)

e sub ri14d,r14, #4

movs pc,rlé

e Another stores Ir and other things to stack, then restores
sub ri14d,ri14, #4

-y 15

stmbd r13!,{r0-r12,r14}

1dmfd r13!,{r0-r12,pc}"
The caret means to loast cpsr from spsr
Exclamation point means to update r13 after popping.

-y 16

IRQ Handlers in C

In gcc for ARM, you can specify the interrupt type with
an attribute. Automatically restores to right address.

void function () attribute__ ((interrupt ("IRQ")));

/* Can be IRQ, FIQ, SWI, ABORT and UNDEF x*/

void __attribute__((interrupt ("UNDEF"))) undefined_instruction_vector (void) {

while (1) {
/* Do Nothing */
+

