
ECE 598 – Advanced Operating
Systems
Lecture 7

Vince Weaver

http://www.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

9 February 2016

http://www.eece.maine.edu/~vweaver

Announcements

• Homework #3 was assigned, due Thursday

1

HW#2 Review

• Code problems: mostly delay too short or second delay

asm branching into first.

• Wasted lots of time tracking down obscure bug, where

the BSS wasn’t where I thought it would be. Literal

pools and linker scripts. Turned out to be a missing -c

in the Makefile.

• Size: C about 200 bytes, assembly 68 bytes?

Can look at .dis files for disassembly

C: 60 bytes of initialization, asm: 12 bytes for delay loop,

2

on C is 56 bytes (due to pessimization from volatile, etc)

also saves/restores LR and registers to maintain calling

convention. can’t explain some of it

• volatile – have C compiler not optimize away stores

• C array of 32-bit ints vs actually byte-wise access

• SPI1 CEN 2. Bonus SPI ports

3

Integer to String Conversion

This it the algorithm I use, there are other ways to do

it that don’t involve the backwards step (starting off by

dividing by 1 billion and dividing the divisor by 10 each

time).

• Repeatedly divide by 10.

• Digit is the remainder. Repeat until quotient 0.

• Make sure handle 0 case.

• Convert each digit to ASCII by adding 48 (’0’)

• Why does the number end up backwards?

4

Division by 10

• ARM1176 in Pi has no divide routine, why isn’t this a

problem?

• Generic x=y/z division is not possible without fancy

work (iterative subtraction? Newton approximation?)

• Dividing by a constant is easier

• C compiler cheats, for /10 it effectively multiplies by

1/10.

5

• Look at generated assembly, you’ll see it multiply by

0x66666667

• Why is it not a problem when dividing by 16?

6

What are interrupts?

• What types of hardware generate interrupts?

Keyboard, timers, I/O, etc.

• What can an OS use interrupts for?

Avoiding polling. Also context switching.

7

Exceptions and Interrupts

• All architectures are different

• ARM does it a little differently from others.

8

ARM CPSR Register

N Z C V

31 30 29 28 7 6 5 4 0

I F T Mode

Interrupt Masks
Thumb

Processor
Mode

Condition

 Flags

• Current Program Status Register

• Contains flags in addition to processor mode

• Six privileged modes: abort, fast interrupt, interrupt,

supervisor, system, undefined

• One non-privileged: user (cannot write CPSR)

• Interrupts and exceptions will automatically switch

modes

9

ARM Interrupt Registers
User/Sys Fast IRQ Supervisor Undefined Abort

r0
r1
r2
r3
r4
r5
r6
r7

r8 r8 fiq
r9 r9 fiq

r10 r10 fiq
r11 r11 fiq
r12 r12 fiq

r13/sp r13 fiq r13 irq r13 svc r13 undef r13 abt
r14/lr r14 fiq r13 irq r14 svc r14 undef r14 abt
r15/pc

cpsr spsr fiq spsr irq spsr svc spsrc undef spsr abt

Unlike other architectures, when switching modes the ARM

10

hardware will preserve the status register, PC and stack and

give you mode-specific versions (register bank switching).

Also for Fast Interrupts r8-r12 are saved as well, allowing

fast handlers that do not have to save registers to the

stack.

11

ARM Interrupt Handling

• ARM core saves CPSR to the proper SPSR

• ARM core saves PC to the banked LR (possibly with an

offset)

• ARM core sets CPSR to exception mode (disables

interrupts)

• ARM core jumps to appropriate offset in vector table

12

Vector Table

Type Type Offset LR Priority

Reset SVC 0x0 – 1

Undefined Instruction UND 0x04 lr 6

Software Interrupt SVC 0x08 lr 6

Prefetch Abort ABT 0x0c lr-4 5

Data Abort ABT 0x10 lr-8 2

UNUSED – 0x14 – –

IRQ IRQ 0x18 lr-4 4

FIQ FIQ 0x1c lr-4 3

13

• See ARM ARM ARMv6 documentation for details.

• Defaults to 0x000000. On some ARM you can move to

any 32-byte aligned address.

• Interrupts: IRQ = general purpose hardware,

FIQ = fast interrupt for really fast response (only 1),

SWI = syscalls, talk to OS

• FIQ mode auto-saves r8-r12.

• Different stacks? IRQ mode, SVC mode (boots into),

user-mode stack

14

Ways to return from IRQ

• subs pc,r14,#4

Sneakily branches and gets the right status register (due

to S in SUBS)

• sub r14,r14,#4

. . .

movs pc,r14

• Another stores lr and other things to stack, then restores

sub r14,r14,#4

15

stmbd r13!,{r0-r12,r14}
. . .

ldmfd r13!,{r0-r12,pc}^
The caret means to loast cpsr from spsr

Exclamation point means to update r13 after popping.

16

IRQ Handlers in C

In gcc for ARM, you can specify the interrupt type with

an attribute. Automatically restores to right address.
void function () __attribute__ ((interrupt ("IRQ")));

/* Can be IRQ , FIQ , SWI , ABORT and UNDEF */

void __attribute__ ((interrupt("UNDEF"))) undefined_instruction_vector(void) {

while (1) {

/* Do Nothing */

}

}

17

