
ECE 598 – Advanced Operating
Systems

Lecture 8

Vince Weaver

http://www.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

11 February 2016

http://www.eece.maine.edu/~vweaver

Announcements

• Homework #3 Due.

• Homework #4 Posted Soon

1

HW#3 Comments

• Sorry about the bug, the manual is a bit unclear about

if you need to enable the FIFO even if you aren’t using

interrupts.

• Problems with serial ports? Why I said to start early. Did

have one unexplained problem with screen on OSX. If you

are getting corrupted chars or lost messages probably a

serial setting. Bitter experience. Why some get through

and others not? You can check the error bits in the

FIFO but what do you do about it?

2

• Setting the speed dividers – there was a nice example in

class / in the notes. Most people having problems were

doing it the same odd way (be careful sharing code).

Hard coding the final result is simplest, especially if you

can’t sanity check due to no early printk. If you’re going

to use floating point, promotion, and casting in C you

better be sure you know how it works. Also typically you

try to avoid using floating point in an operating system

kernel (why?). True it might be nice to have some sort

of generic set bps function, but it requires some division

and what did we learn about non-constant division last

3

time?

• Printing colors. Didn’t want to make it *too* easy. How

do you print escape char? Various ways. Implement %c.

Manually set the offset in your string to 27. Or in C you

can print \033 which is octal for ASCII 27

4

(Review) ARM CPSR Register

N Z C V

31 30 29 28 7 6 5 4 0

I F T Mode

Interrupt Masks
Thumb

Processor
Mode

Condition

 Flags

• Current Program Status Register

5

(Review) ARM Interrupt Handling

• ARM core saves CPSR to the proper SPSR

• ARM core saves PC to the banked LR (possibly with an

offset)

• ARM core sets CPSR to exception mode (disables

interrupts)

• ARM core jumps to appropriate offset in vector table

6

(Review) Vector Table

Type Type Offset LR Priority

Reset SVC 0x0 – 1

Undefined Instruction UND 0x04 lr 6

Software Interrupt SVC 0x08 lr 6

Prefetch Abort ABT 0x0c lr-4 5

Data Abort ABT 0x10 lr-8 2

UNUSED – 0x14 – –

IRQ IRQ 0x18 lr-4 4

FIQ FIQ 0x1c lr-4 3

7

Getting Interrupt to Happen

• Initialize (set up vectors and stacks)

• Enable Interrupt at Pi Level

• Enable Interrupt at Device Level

• Enable Global interrupts at ARM Level

8

Raspberry Pi Interrupts

• See Section 7

• Up to 64 possible, but only subset available to ARM

chip (rest belong to GPU)

• Basic pending register: 32-bit field with most common

IRQ sources

• Full pending, two 32-bit registers a bit for each IRQ

source and whether triggered

9

• FIQ register, can pick which one is FIQ

• Enable registers, to set which interrupts are enabled

• Disable registers

• You also have to enable interrupts on the device too

10

Initializing

• How do we get the vector to 0x0?

Copy it there after the fact. Hard part is if we want the

routines to be C code.

• Clever, have the reset vector point to start of code, so

you can have the reset vector of beginning of code and

it will jump to the right location.

_start:

ldr pc , reset_addr

ldr pc , undefined_addr

ldr pc , software_interrupt_addr

ldr pc , prefetch_abort_addr

11

ldr pc , data_abort_addr

ldr pc , unused_addr

ldr pc , interrupt_addr

ldr pc , fast_interrupt_addr

reset_addr: .word reset

undefined_addr: .word undefined_instruction

software_interrupt_addr: .word software_interrupt

prefetch_abort_addr: .word prefetch_abort

data_abort_addr: .word data_abort

unused_addr: .word reset

interrupt_addr: .word interrupt

fast_interrupt_addr: .word fast_interrupt

_start:

...

reset:

ldr r3 , =_start

mov r4 , #0 x0000

ldmia r3!,{r5 , r6, r7, r8, r9, r10 , r11 , r12}

stmia r4!,{r5 , r6, r7, r8, r9, r10 , r11 , r12}

ldmia r3!,{r5 , r6, r7, r8, r9, r10 , r11 , r12}

stmia r4!,{r5 , r6, r7, r8, r9, r10 , r11 , r12}

12

Setting up the Stacks

• Need chunk of memory for each stack

• Need to temporarily switch to mode, then set the stack

pointer

• You can manually (without getting an interrupt) set

the CPSR value with a msr instruction (move to status

register)

• Luckily system boots up in SVC mode so we can change

CPSR

13

Our Memory Map

0x1c00 0000

0xffff ffff

0x2100 0000

0x2000 0000

0x0000 0000

0x0000 0100

0x0000 8000

Our Operating

System

Invalid

Peripheral

Registers

GPU RAM

Unused RAM

System Stack

IRQ Stack

ATAGs

IRQ Vectors

(4GB)

(528MB)

(512MB)

(448MB)

(32k)

(256)

(16k)0x0000 4000

14

Setting up the Stacks
/* Set up the Interrupt Mode Stack */

/* First switch to interrupt mode , then update stack pointer */

mov r3 , #(CPSR_MODE_IRQ | CPSR_MODE_IRQ_DISABLE | CPSR_MODE_FIQ_DISA

BLE)

msr cpsr_c , r3

mov sp , #0 x4000

/* Switch back to supervisor mode */

mov r3 , #(CPSR_MODE_SVR | CPSR_MODE_IRQ_DISABLE | CPSR_MODE_FIQ_DISA

BLE)

msr cpsr_c , r3

15

Clearing the Interrupt Status Bit
_enable_interrupts:

mrs r0 , cpsr

bic r0 , r0 , #0x80 ; bit clear

msr cpsr_c , r0

mov pc , lr

16

Configuring a Timer

• Section 14 of peripheral manual.

• It is similar but not exactly the same as an ARM SP804

Timer

• There are also the system timers (4 timers described in

Section 12).

• Note that the timer we use is based on the APB clock

which

17

/* Timer is based on the APB bus clock which is 250 MHz on Rasp -Pi */

int timer_init(void) {

uint32_t old;

/* Disable the clock before changing config */

old=mmio_read(TIMER_CONTROL);

old &=~(TIMER_CONTROL_ENABLE|TIMER_CONTROL_INT_ENABLE);

/* First we scale this down to 1MHz using the pre -divider */

/* We want to /250. The pre -divider adds one , so 249 = 0xf9 */

mmio_write(TIMER_PREDIVIDER ,0xf9);

/* We enable the /256 prescalar */

/* So final frequency = 1MHz /256/61 = 64.04 Hz */

mmio_write(TIMER_LOAD ,61);

/* Enable the timer in 32-bit mode , enable interrupts */

/* And pre -scale the clock down by 256 */

mmio_write(TIMER_CONTROL ,

TIMER_CONTROL_32BIT | /* typo 23 */

18

TIMER_CONTROL_ENABLE |

TIMER_CONTROL_INT_ENABLE |

TIMER_CONTROL_PRESCALE_256);

/* Enable timer interrupt */

mmio_write(IRQ_ENABLE_BASIC_IRQ ,IRQ_ENABLE_BASIC_IRQ_ARM_TIMER);

return 0;

}

19

Sample Interrupt Handler

• CPU disabled interrupts and switches CPSR to correct

mode

• Save registers (no need to save SPSR unless nested)

• Interrupt handler checks and sees which interrupt was

triggered (in a register)

• Interrupt Status Routine (ISR) called which services the

routine and then acknowledges interrupt

20

• Handler restores context, returns

• CPU restores execution

21

Sample Interrupt Handler
void __attribute__ ((interrupt("IRQ"))) interrupt_vector(void) {

static int lit = 0;

int which;

/* Check to see what interrupt we had */

which=mmio_read(IRQ_BASIC_PENDING);

if (which &0x1) {

/* Clear the ARM Timer interrupt */

mmio_write(TIMER_IRQ_CLEAR ,0x1);

/* Flip the LED */

if(lit) { led_off (); lit =0; }

else {led_on (); lit =1; }

}

}

22

Enabling Interrupts
static inline uint32_t get_CPSR(void) {

uint32_t temp;

asm volatile ("mrs %0,CPSR":"=r" (temp):) ;

return temp;

}

static inline void set_CPSR(uint32_t new_cpsr) {

asm volatile ("msr CPSR_cxsf ,%0"::"r"(new_cpsr));

}

/* enable interrupts */

static inline void enable_interrupts(void){

uint32_t temp;

temp = get_CPSR ();

set_CPSR(temp & ~0x80);

}

23

