
ECE 598 – Advanced Operating
Systems
Lecture 9

Vince Weaver

http://www.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

16 February 2016



Announcements

• Homework #4 was posted

• Homework #3 was graded

1



HW#3 Overview

• be sure your code compiles!

• printk: instead of /10, print remainder plus ’0’ instead

/16 (which converts to shift) and two cases. 0-9 same

as before, but A-F (you can just add ’A’-10 which I think

is 55)

technically upper vs lowecase %X vs %x

• Be sure print hardware info (r1)

• Why serial port?

2



• Why parity?

• Why no parity?

• inline asm

• Why no strtok?

• Problems with OSX?

3



Things added for HW#4

4



ATAGS

• List of variables passed by bootloader. A standard. See:

http://www.simtec.co.uk/products/SWLINUX/files/booting_article.html

• We mostly care about getting memory size and machine

type.

• Size, Tag-type, additional

• Located traditionally at 0x100 but you should really

check r3 for addr.

5



• Starts with ATAG CORE

• Ends with ATAG NONE

• We wants ATAG MEM and maybe ATAG CMDLINE on

Raspberry Pi.

• Format is SIZE, TYPE, DATA0 ... DATAN. Then repeat.

6



include and quotes

• What is the difference between #include <string.h> and

#include "string.h"

• The first looks at the system includes

• The second looks in your local directory (or what you

specify with -I on the command line)

7



string manipulation

• Most C-based OSes quickly obtain string manipulation

functions

• strncmp(), strlen(), strncpy(), memcpy(), memset(),

memcpy()

• What’s the different between strncpy and memcpy?

• How optimized do these routines need to be?

• memcpy() is often short blast of C

8



for(i=0;i<n;i++) { *d=*s; d++; s++;}

but it can be optimized to death.

• Should I mention memmove difference? Why it’s there,

hazzard when you don’t use it right? (memmove the

areas can overlap) (what happens if you copy backwards)

9



no more \r

• I’ve modified uart write() so you no longer need to do

\r.

10



writing a shell

• What is a shell, or monitor routine?

• How can you parse a command line?

• Read values into a buffer. When enter pressed, check

for a command. strcmp()? By hand? strtok() if fancy?

• Do whatever the command indicates, then reset buffer

pointer.

• Print an error if unknown command.

11



LED routines

• I added LED routines in led.c along with gpio.c

• This abstracts the code away, so it shuold work on any

kind of Pi transparently (though very slightly slower than

direct coding it)

• Good for you, but also makes grading easier for me.

12



Interrupt Roundup

Any questions on interrupts?

13



Interrupts Schemes

• More info on nested interrupts

• More info on interrupt priority

14



Interrupts on Linux

• Can look in /proc/interrupts

• Latency matters. Old days had problems where you’d

lose serial interrupts (small FIFOs) if your disk drive took

too long, etc.

• Cannot do anything that might block in an interrupt.

Can you do I/O? Can you do a printk?

• Top Half / Bottom Half

Have interrupt routine be bare minimum short. ACK

15



interrupt, handle super pressing thing (copy data out of

FIFO) Then tell the kernel to handle the rest later.

So you might have a tasklet/kernel thread that runs

occasionally (and is fully interruptable) that will do the

rest.

For example, network packet comes in, important to read

the packet and ACK interrupt. Put it in queue, then later

the code that does longer latency stuff (decodes packet,

does ethernet or TCP/IP stuff, then finally copies the

data to the code waiting)

• Timer interrupt. How often? 100Hz originally. Up to

16



1000Hz (why?) now configurable, often at 250Hz.

17


