
ECE 598 – Advanced Operating
Systems

Lecture 10

Vince Weaver

http://www.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

18 February 2016

Announcements

• Homework #5 will be posted

1

Userspace

• Why use userspace (why not everything in kernel like

DOS?)

Slower, but has some protections from bad

programs/security

• Can’t access all of CPSR register

Can’t turn off interrupts

Can’t switch to priviledged modes

• If virtual memory enabled, can’t access protected/kernel

2

memory

• Can you still access MMIO?

3

Entering User Mode
mov r0 , #0x10

msr SPSR , r0

ldr lr , =first

movs pc , lr

4

System Calls

• If we are running in user mode, how can we get back

into the kernel?

• Interrupts! Timer interrupt is often used to periodically

switch to the kernel and it can then do any accumulated

tasks.

• How can we manually call into the kernel when we need

to?

• System calls!

5

ARM System Calls

• On ARM a SWI instruction (sometimes is shown as a

SVC instruction) causes a software interrupt.

• This calls into the kernel SWI Interrupt handler (which

we will have to set up)

• Based on the state of the registers at the time of the

SWI, the kernel will do something useful.

6

Linux ARM System Call Interface

• EABI: Arguments in r0 through r6. System call number

in r7.

swi 0

Return value in r0

• OABI: Arguments in r0 through r6. swi

SYSBASE+SYSCALLNUM. Why bad? No way to get swi

value except parsing back in instruction stream.

7

SWI Interrupt Handler
uint32_t __attribute__ ((interrupt("SVC"))) swi_handler(

uint32_t r0, uint32_t r1, uint32_t r2, uint32_t r3) {

register long r7 asm ("r7");

printk("Syscall %d\n",r7);

/* Copy result into place of r0 on return stack */

asm volatile("str %[result],[sp ,#0]\n"

: /* output */

: [result] "r" (result) /* input */

:); /* clobber */

return result;

}

8

Linux System Call Results

• Result is a single value (plus contents of structures

pointed to)

• How can you indicate error?

• On Linux, values between -4096 and -1 are treated as

errors. Usually -1 is returned and the negative value is

made positive and stuck in errno.

• What are the limitations of this? (what if -4000 is a

valid return?)

9

Non-ARM syscalls

• It’s up to the OS and architecture

• x86 it’s int 0x80 on 32-bit and syscall on 64-bit

• Some OSes pass paramaters on stack, Linux it’s usually

in registers for speed.

10

Application Binary Interface

What is an ABI and why is it necessary?

11

Linux GNU EABI

• Procedure Call Standard for the ARM architecture

• ABI, agreed on way to interface with system.

• Arguments to registers. r0 throgh r3.

• Return value in r0.

• How to return float, double, pointers, 64-bit values?

(There’s a new ABI on ARM, hf (hard floating point)

that’s mostly about how to pass floating point values

around)

• How to pass the above?

12

• What if more than 4 arguments? (stack)

• Is there a stack, how aligned?

• Structs, bitfields, endianess?

• Callee vs Caller saved registers? (A subroutine must

preserve the contents of the registers r4-r8, r10, r11 and

SP)

• Frame Pointer?

13

ABI Purpose

• An ABI is used so that code written by different groups

knows how to communicate (code to c-library, c-library

to kernel, etc)

• If you are writing your own OS from scratch can write

own ABI, but then not compatible with existing code

• Writing in assembly you can ignore the ABI for speed,

but only if you do not call out to anyone else’s code

14

Calling a Syscall
static inline uint32_t syscall3(int arg0 , int arg1 , int arg2 , int which) {

uint32_t result;

asm volatile ("mov r0 , %[arg0]\n"

"mov r1, %[arg1]\n"

"mov r2, %[arg2]\n"

"mov r7, %[which]\n"

"swi 0\n"

"mov %[result], r0\n"

: [result] "=r" (result)

: [arg0] "r" (arg0),

[arg1] "r" (arg1),

[arg2] "r" (arg2),

[which] "r" (which)

: "r0", "r1", "r2", "r7");

return result;

}

15

Userspace Executables

16

Executable Format

• ELF (Executable and Linkable Format, Extensible

Linking Format)

Default for Linux and some other similar OSes

header, then header table describing chunks and where

they go

• Other executable formats: a.out, COFF, binary blob

17

ELF Layout

ELF Header

Text (Machine Code)

Data (Initialized Data)

Program header

Symbols

Debugging Info

....

Section header

18

ELF Description

• ELF Header includes a “magic number” saying it’s

0x7f,ELF, architecture type, OS type, etc. Also location

of program header and section header and entry point.

• Program Header, used for execution:

has info telling the OS what parts to load, how, and

where (address, permission, size, alignment)

• Program Data follows, describes data actually loaded

into memory: machine code, initialized data

19

• Other data: things like symbol names, debugging info

(DWARF), etc.

DWARF backronym = “Debugging with Attributed

Record Formats”

• Section Header, used when linking:

has info on the additional segments in code that aren’t

loaded into memory, such as debugging, symbols, etc.

20

Linux Virtual Memory Map

We will go over virtual memory in much greater detail

later.

21

Operating System
Stack

Operating System

0xffff ffff

Exexcutable Info

Environment Strings

0xbfff ffff

Cmd Line Arg Strings

Executable Name

Padding

Stack

Cmd Line Arg Count

Command Line Pointers

Environment Pointers

ELF Auxiliary Vectors

Text (Executable)

0x0804 8000

Data

BSS

Heap

mmap

vdso

Null Guard Page
0x0000 0000

shared libraries

22

Program Memory Layout on Linux

• Text: the program’s raw machine code

• Data: Initialized data

• BSS: uninitialized data; on Linux this is all set to 0.

• Heap: dynamic memory. malloc() and brk(). Grows

up

• Stack: LIFO memory structure. Grows down.

23

Program Layout

• Kernel: is mapped into top of address space, for

performance reasons

• Command Line arguments, Environment, AUX vectors,

etc., available above stack

• For security reasons “ASLR” (Address Space Layout

Randomization) is often enabled. From run to run the

exact addresses of all the sections is randomized, to

make it harder for hackers to compromise your system.

24

Loader

• /lib/ld-linux.so.2

• loads the executable

25

Static vs Dynamic Libraries

• Static: includes all code in one binary.

Large binaries, need to recompile to update library code,

self-contained

• Dynamic: library routines linked at load time.

Smaller binaries, share code across system, automatically

links against newer/bugfixes

26

