
ECE 598 – Advanced Operating
Systems

Lecture 11

Vince Weaver

http://www.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

23 February 2016

http://www.eece.maine.edu/~vweaver


Announcements

• Homework #5 Posted

• Some notes, discovered the hard way:

◦ Do not call a syscall while in SVC mode. Why? SWI

mode and SVC mode share the same stack pointer

◦ Also, what happens if you forget to set up a user

stack?

◦ The gcc swi handler won’t do the right thing with

regards to returning a value from a syscall. Especially

if you use local variables.

1



HW#4 Review

• Forgot to include README in Makefile.

• Same issue with HW#5 if you downloaded before

noon Monday. Can manually attach README if you

downloaded before then.

• Be careful using &0x1 vs &&0x1

• Be sure your code compiles

• FIQ vs IRQ difference? FIQ banks some registers, so is

2



faster and higher priority.

• BASIC PENDING bit 19 is interrupt 57 which is uart

• How to change modes? Write to the mode field of CPSR

register.

3



Syscall Summary (From Last Time)

• Want to run in userspace usually, safer

• What two ways to get from user back to kernel space?

• How do you call into a syscall?

4



Linux System Call Results

• Result is a single value (plus contents of structures

pointed to)

• How can you indicate error?

• On Linux, values between -4096 and -1 are treated as

errors. Usually -1 is returned and the negative value is

made positive and stuck in errno.

• What are the limitations of this? (what if -4000 is a

valid return?)

5



ABI/Executable Review

• What’s an ABI? Is it necessary?

• ELF executable format

• Static vs Dynamic libraries

6



How a Program is Loaded on Linux

• Kernel Boots

• init started

• init calls fork()

• child calls exec()

• Kernel checks if valid ELF. Passes to loader

• Loader loads it. Clears out BSS. Sets up stack. Jumps

7



to entry address (specified by executable)

• Program runs until complete.

• Parent process returned to if waiting. Otherwise, init.

8



UCLinux

Linux typically relies on MMU (virtual memory). You can

run it on systems w/o virtual memory, this version is called

ucLinux (micro-controller Linux).

Our OS in the homework is similar in design to this.

9



Flat File Format

• http://retired.beyondlogic.org/uClinux/bflt.htm

• bFLT or 0x62, 0x46, 0x4C, 0x54

• struct flat_hdr {

char magic [4];

unsigned long rev; /* version */

unsigned long entry; /* Offset of first executable instruction

with text segment from beginning of file */

unsigned long data_start; /* Offset of data segment from beginning of

file */

unsigned long data_end; /* Offset of end of data segment

from beginning of file */

unsigned long bss_end; /* Offset of end of bss segment from beginning

of file */

/* (It is assumed that data_end through bss_end forms the bss segment .) */

10

http://retired.beyondlogic.org/uClinux/bflt.htm


unsigned long stack_size; /* Size of stack , in bytes */

unsigned long reloc_start; /* Offset of relocation records from

beginning of file */

unsigned long reloc_count; /* Number of relocation records */

unsigned long flags;

unsigned long filler [6]; /* Reserved , set to zero */

};

11



Figuring out how it actually works

• Spec isn’t worth much

Your best bet is various Wikis and blog postings (TI-

nspire?)

• Actual code more useful

• fs/binfmt flat.c in kernel source.

• Making the binaries hard. Not just a simple matter of

telling gcc or linker (no one has bothered yet). Most

12



people use “elf2flt” but not-standard and hard to even

find which code repository to use.

13



Loading a flat binary

• load flat binary()

• adjust stack space for arguments (argv and envp)

– loading header. Uses ntohl(). Why?

Endian issues.

– check for bFLT magic

– check version

– check rlimits() [stack, etc]

– setup new exec()

14



– allocate mem for our binary (separately handle XIP

and compressed format)

– read code()

– put all of our values in mm struct (Start/stop of all

sections)

– RELOCATION – fix up any symbols that changed due

to being moved. (HOW DOES THIS WORK)

– flush icache()

– zero the BSS and STACK areas

• setup shared libraries

15



• install exec creds()

• set binfmt()

• actually copy command line args, etc, at front of stack

• put stack pointer in mm structure

• start thread()

16



PIC/PIE

• Position independent code

• Instead of loading from absolute address, uses an offset,

usually in a register or PC-relative.

• gcc has an option -fPIC to generate

17



Relocation

• List of offsets to pointers

• PIC compiles things with zero offset

• At load time the pointers are fixed up to have the load

address

• Separate relocation for GOT (global offset table) which

is a list of pointers at the beginning of the data segment,

ending with -1

18



Flat Shared Libraries

• Like mini executables, can have up to 256 of them

• Libraries loaded in place, then the callsites are fixed up

to have the right address.

• Also at start time the various library init routines are

called

19



Execute in Place

• Want our text in ROM. Why? Save space, save copying.

Why bad? ROM often slow, more complicated binaries

(data not follow text)

20



RAM Disk

• How to load our code?

• Can we load from disk? No driver yet.

• We can create a RAM disk, will be loaded by our

bootloader right after. Sometimes called an initrd.

21



Context switching

22



Starting a Process and Context switching
r14 the process LR

r13

r12

r11

r10

r9

r8

r7

r6

r5

r4

r3

r2

r1

r0 PCB pointer points here (for stm instruction)

lr pc from process to return to

spsr

23



Process Control Block

• PCB – process control block. One for each process

• r0-r14 saved. PC. cpsr

• Pid, uid

• Memory ranges

• Process accounting

• Ready, sleeping, waiting, etc

24



Entering User Mode
mov r0 , #0x10

msr SPSR , r0

ldr lr , =first

movs pc , lr

25



ARM Context Switch

r12 = new process PCB, r13 = old
STM sp ,{R0 -lr}^ ; Dump user registers above R13.

; ^ means get user register

MRS R0 , SPSR ; get the svaed user status

STMDB sp , {R0 , lr} ; and dump with return address below.

; lr is the handler lr, pointing

; to pc we came fom

LDR sp , [R12], #4 ; Load next process info pointer.

CMP sp , #0 ; If it is zero , it is invalid

LDMDBNE sp , {R0 , lr} ; Pick up status and return address.

MSRNE SPSR_cxsf , R0 ; Restore the status.

LDMNE sp , {R0 - lr}^ ; Get the rest of the registers

NOP

SUBSNE pc, lr, #4 ; and return and restore CPSR.

; Insert "no next process code" here.

26



Storing
ldmfd r13!,{r0-r3,r12 ,r14}

ldr r13 ,= PCB_PtrCurrentTask

ldr r13 ,[r13]

sub r13 ,r13 ,# offset15regs

stmia r13 ,{r0 -r14}^

mrs r0 ,spsr

stmdb r13 ,{r0 ,r14}

27



Loading
ldr r13 ,=PCB\_PtrNextTask

ldr r13 ,[r13]

sub r13 ,r13 ,# offset15regs

ldmdb r13 ,{r0 ,r14}

msr spsr_cxsf ,r0

ldmia r13 ,{r0=r14}^ ; ^ means update user regs

ldr r13 ,= PCB_IRQstack

ldr r13 ,[r13]

movs pc,r14

28


