ECE 598 — Advanced Operating

Systems
Lecture 11

Vince Weaver
http://www.eece.maine.edu/~vweaver

vincent .weaver@maine.edu

23 February 2016

http://www.eece.maine.edu/~vweaver

Announcements

e Homework #b5 Posted
e Some notes, discovered the hard way:
o Do not call a syscall while in SVC mode. Why? SWI
mode and SVC mode share the same stack pointer
o Also, what happens if you forget to set up a user
stack?
o The gcc swi handler won't do the right thing with
regards to returning a value from a syscall. Especially
If you use local variables.

-y 1

HW#4 Review

e Forgot to include README in Maketile.

e Same issue with HW#5 if you downloaded before
noon Monday. Can manually attach README if you
downloaded before then.

e Be careful using %0x1 VS &&0x1
e Be sure your code compiles

e FIQ vs IRQ difference? FIQ banks some registers, so is

-y)

faster and higher priority.
e BASIC_PENDING bit 19 is interrupt 57 which is uart

e How to change modes? Write to the mode field of CPSR
register.

Syscall Summary (From Last Time)

e \Want to run in userspace usually, safer
e What two ways to get from user back to kernel space?

e How do you call into a syscall?

Linux System Call Results

e Result is a single value (plus contents of structures
hointed to)

e How can you indicate error?

e On Linux, values between -4096 and -1 are treated as
errors. Usually -1 is returned and the negative value is
made positive and stuck in errno.

e What are the limitations of this? (what if -4000 is a
valid return?)

-y 5

ABI/Executable Review

e What's an ABI? Is it necessary?
e ELF executable format

e Static vs Dynamic libraries

How a Program is Loaded on Linux

e Kernel Boots

e init started

e init calls fork()

e child calls exec ()

e Kernel checks if valid ELF. Passes to loader

e Loader loads it. Clears out BSS. Sets up stack. Jumps

-y ;

to entry address (specified by executable)
e Program runs until complete.

e Parent process returned to if waiting. Otherwise, init.

UCLinux

Linux typically relies on MMU (virtual memory). You can
run it on systems w/o virtual memory, this version is called
ucLinux (micro-controller Linux).

Our OS in the homework is similar in design to this.

Flat File Format

® http://retired.beyondlogic.org/uClinux/bflt.htm

e bFLT or 0x62, 0x46, 0x4C, O0x54

® struct flat_hdr {
char magic [4];
unsigned long
unsigned 1long
unsigned long

unsigned long

unsigned long

rev;
entry;

data_start;

data_end;

bss_end;

/ *
/ *

/ *

/ *

/ *

version */

Offset of first executable instruction

with text segment from beginning of file */
Offset of data segment from beginning of
file x*/

Offset of end of data segment

from beginning of file x*/

Offset of end of bss segment from beginning
of file x/

/* (It is assumed that data_end through bss_end forms the bss segment.) */

10

http://retired.beyondlogic.org/uClinux/bflt.htm

unsigned
unsigned

unsigned
unsigned
unsigned

long
long

long
long
long

stack_size;
reloc_start;

reloc_count;
flags;
filler [6];

/ *

/ *

/ *

Size of stack, in bytes */

Offset of
beginning
Number of

Reserved,

relocation records from
of file x/
relocation records x*/

set to zero x/

11

Figuring out how it actually works

e Spec isn't worth much
Your best bet is various Wikis and blog postings (TI-
nspire?)

e Actual code more useful
e fs/binfmt_flat.c in kernel source.

e Making the binaries hard. Not just a simple matter of
telling gcc or linker (no one has bothered yet). Most

-y 12

people use “elf2flt” but not-standard and hard to even
find which code repository to use.

/Y 13

Loading a flat binary

e load_flat_binary()

e adjust stack space for arguments (argv and envp)

— loading header. Uses ntohl (). Why?
Endian issues.

NeC
NecC

NEC

k for bFLT magic
K version

k rlimits() [stack, etc]

— setup_new_exec()

14

— allocate mem for our binary (separately handle XIP
and compressed format)

— read_code()

— put all of our values in mm struct (Start/stop of all
sections)

— RELOCATION — fix up any symbols that changed due
to being moved. (HOW DOES THIS WORK)

— flush_icache()

— zero the BSS and STACK areas

e setup shared libraries

-y 15

install _exec_creds()

set_binfmt()

actually copy command line args, etc, at front of stack

put stack pointer in mm structure

start_thread()

16

PIC/PIE

e Position independent code

e Instead of loading from absolute address, uses an offset,
usually in a register or PC-relative.

e gcc has an option —fPIC to generate

-y 17

Relocation

e List of offsets to pointers
e PIC compiles things with zero offset

e At load time the pointers are fixed up to have the load
address

e Separate relocation for GOT (global offset table) which
s a list of pointers at the beginning of the data segment,
ending with -1

-y 18

Flat Shared Libraries

e Like mini executables, can have up to 256 of them

e Libraries loaded in place, then the callsites are fixed up
to have the right address.

e Also at start time the various library init routines are
called

-y 19

Execute in Place

e \Want our text in ROM. Why? Save space, save copying.
Why bad? ROM often slow, more complicated binaries
(data not follow text)

/Y 20

RAM Disk

e How to load our code?
e Can we load from disk? No driver yet.

e We can create a RAM disk, will be loaded by our
bootloader right after. Sometimes called an initrd.

-y 21

Context switching

22

Starting a Process and Context switching

r14

the process LR

r13

r12

r11

r10

r9

r8

rf{

ro

rb

r4

r3

r2

rl

rO

PCB pointer points here (for stm instruction)

lr

pc from process to return to

spsr

23

Process Control Block

e PCB — process control block. One for each process
e r0-r14 saved. PC. cpsr

e Pid, uid

e Memory ranges

e Process accounting

e Ready, sleeping, waiting, etc

24

mov rO, #0x10
msr SPSR, rO0
ldr 1lr, =first
movs pc, 1r

Entering User Mode

25

rl12 =

STM sp,{RO-1r}"~ ; Dump user registers above R13.
; ~ means get user register
MRS RO, SPSR ; get the svaed user status
STMDB sp, {RO, 1r} ; and dump with return address below.
; lr is the handler 1lr, pointing
; to pc we came fom
LDR sp, [R12], #4 ; Load next process info pointer.
CMP sp, #0 ; If it is zero, it is imnvalid
LDMDBNE sp, {RO, 1r} ; Pick up status and return address.
MSRNE SPSR_cxsf, RO ; Restore the status.
LDMNE sp, {RO - 1r}~ ; Get the rest of the registers
NOP
SUBSNE pc, 1r, #4 ; and return and restore CPSR.

ARM Context Switch

new process PCB, r13 = old

; Insert "mopnext_ process code" here.

26

ldmfd r13!,{r0-r3,r12,r14}
ldr r13,=PCB_PtrCurrentTask
ldr r13,[r13]

sub r13,r13 ,#offsetlbregs
stmia r1i3,{r0-r14}"

mrs r0O,spsr

stmdb ri3,{r0,r14}

Storing

27

ldr r13,=PCB_PtrNextTask
ldr r13,[r13]

sub r13,r13 ,#offsetlbregs
ldmdb r13,{r0,r14}

msr spsr_cxsf ,r0

ldmia r13,{r0=r14}" ;
ldr r13,=PCB_IRQstack

ldr r13,[r13]

movs pc,rl4

Loading

means update user regs

28

