
ECE 598 – Advanced Operating
Systems

Lecture 13

Vince Weaver

http://www.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

1 March 2016

http://www.eece.maine.edu/~vweaver


Announcements

• Homework #6

Short. Due after midterm. Be sure to look at memory

problem.

Warnings on why its good to comment your code.

• Raspberry Pi 3 is out

1



HW#5 Review

• Shell to userspace

• Add a time system call

Writing to a user-supplied pointer. Dangerous?

copy to user()?

• nonblocking getchar

• Why run in userspace?

• Changing back to kernel mode

• What is an ABI

2



Midterm Review

• Closed book/notes/computer but can bring one piece of

notebook paper (front only) with notes on it

• Questions will be similar to those from homeworks

• Topics

◦ Benefits of an OS / Downsides of an OS

◦ Serial communication: why are we using it? What does

9600 7E1 mean? How does hardware and software flow

control work?

◦ Boot process

3



◦ High level, how the GPIO interface works

◦ Interrupts: how they switch processor mode, why FIQ

is different from IRQ mode. How to switch back from

userspace.

◦ System calls

◦ ABI

◦ Memory allocation: first vs best fit

4



Advanced Memory Handling

5



Security/Safety

• Want a way to mark memory regions as user only, or

read-only, or no-execute

• Some processors provide “segments” for this

• Some ARM processors have a “Memory Protection Unit”

(MPU)

• Most modern processors have an MMU (memory

management unit) to do full virtual memory

6



Using More Memory than Physically
Available

• How can you have a program that accesses more RAM

than available in physical memory?

• Swapping, as discussed before

• Can manually swap out small parts of a program, this

technique is called overlays.

• Split program in parts. Only load the part currently

7



running at any given time.

• Can we have hardware do this automatically? This is

part of the idea of virtual memory.

8



Virtual Memory

• Original purpose was to give the illusion of more main

memory than available, with disk as backing store.

• Give each process own linear view of memory.

• Demand paging (no swapping out whole processes).

• Execution of processes only partly in memory, effectively

a cache.

• Memory protection

• Reduces fragmentation

9



Diagram

Text

Data

BSS

Heap

Stack

Kernel

Text

Data

BSS

Heap

Stack

Kernel

Virtual Process 1 Virtual Process 2

Physical RAM

10



Memory Management Unit

Can run without MMU. There’s even MMU-less Linux.

How do you keep processes separate? Very carefully...

11



Page Table

• Collection of Page Table Entries (PTE)

• Some common components: ID of owner, Virtual Page

Number, valid bit, location of page (memory, disk, etc),

protection info (read only, etc), page is dirty, age (how

recent updated, for LRU)

12



Hierarchical Page Tables

• With 4GB memory and 4kb pages, you have 1 Million

pages per process. If each has 4-byte PTE then 4MB of

page tables per-process. Too big.

• It is likely each process does not use all 4GB at once.

(sparse) So put page tables in swappable virtual memory

themselves!

4MB page table is 1024 pages which can be mapped in

1 4KB page.

13



Hierarchical Page Table Diagram

Virtual Address

10bits 10bits 12bits

Physical Memory

Page Table

Base Address

(Stored in a register)

4MB Page Table 4kB page tables

14



Hierarchical Page Table Diagram

• 32-bit x86 chips have hardware 2-level page tables

• ARM 2-level page tables

15



Inverted Page Table

• How to handle larger 64-bit address spaces?

• Can add more levels of page tables (4? 5?) but that

becomes very slow

• Can use hash to find page. Better best case performance,

can perform poorly if hash algorithm has lots of aliasing.

16



Inverted Page Table Diagram

HASH

Physical Memory

Page Tables

Virtual 

Address

re−hash

alias

hit

17



Walking the Page Table

• Can be walked in Hardware or Software

• Hardware is more common

• Early RISC machines would do it in Software. Can be

slow. Has complications: what if the page-walking code

was swapped out?

18



TLB

• Translation Lookaside Buffer

(Lookaside Buffer is an obsolete term meaning cache)

• Caches page tables

• Much faster than doing a page-table walk.

• Historically fully associative, recently multi-level multi-

way

• TLB shootdown – when change a setting on a mapping

19



and TLB invalidated on all other processors

20



Flushing the TLB

• May need to do this on context switch if doesn’t store

ASID or ASIDs run out.

• Sometimes called a “TLB Shootdown”

• Hurts performance as the TLB gradually refills

• Avoiding this is why the top part is mapped to kernel

under Linux

21


