
ECE 598 – Advanced Operating
Systems

Lecture 15

Vince Weaver

http://www.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

24 March 2016



Announcements

• Homework #7 will be posted

1



Virtual Memory Wrapup

2



Large Pages

• Another way to avoid problems with 64-bit address space

• Larger page size (64kB? 1MB? 2MB? 2GB?)

• Less granularity. Potentially waste space

• Fewer TLB entries needed to map large data structures

• Compromise: multiple page sizes.

Complicate O/S and hardware. OS have to find free

blocks of contiguous memory when allocating large page.

3



• Transparent usage? Transparent Huge Pages?

Alternative to making people using special interfaces

to allocate.

4



Having Larger Physical than Virtual
Address Space

• 32-bit processors cannot address more than 4GB

x86 hit this problem a while ago, ARM just now

• Real solution is to move to 64-bit

• As a hack, can include extra bits in page tables, address

more memory (though still limited to 4GB per-process)

• Linus Torvalds hates this.

5



• Hit an upper limit around 16-32GB because entire low

4GB of kernel addressable memory fills with page tables

6



ARM 1176 (ARMv6) MMU

• See Chapter 6 of the ARM1176 Technical Reference

Manual http://infocenter.arm.com/help/topic/

com.arm.doc.ddi0301h/DDI0301H_arm1176jzfs_r0p7_

trm.pdf

• page sizes: 4KB, 64KB, 1MB, and 16MB

• you can specify access permissions for 64KB large pages

and 4KB small pages separately (Subpages)

• micro-TLB

7



• one 64-entry unified TLB and a lockdown region of eight

entries

• you can mark entries as a global mapping, or associated

with a specific application space identifier to eliminate

the requirement for TLB flushes on most context

switches

• access permissions extended to enable Privileged read-

only and Privileged or User read-only modes to be

simultaneously supported

• hardware page table walks

8



• separate Secure and Non-secure entries and page tables

• Small fast microTLB. 1 cycle. Has ASID

• Larger slower main TLB, 64-entry 2-way

• Enable MMU by writing to special register in CP15

9



ARM 1176 (ARMv6) Caches

• L1 instruction cache (32kB?)

• L1 data cache (32kB?). Aliasing if VM enabled (bits

12:13). Need to do page coloring, only use 4kB pages,

or limit cache size to 16KB

• TCM (tighly coupled memory) small area of up to 32kb

that you can map to arbitrary page location. Fast, cache

speeds. Useful for things like FIQ handlers in real time

systems.

10



Devices

• Character devices – read a sequence of characters

incoming, like a serial connection

open/read/write

• Block devices – read chunks of data with random access,

can seek back and forth

open/read/write/lseek

• /dev, mknod

11



Block Devices

• Disks?

• Ramdisk?

12



Filesystems

• What is a file?

Unix is just a stream of bytes. That’s not necessarily the

only thing. Old systems files were just 80-column punch

card images.

• How do you store it?

In a “file”?

Everything in root directory? Hiearchical? Database?

• Why not just load everything into memory? Too big?

13



Share with other processes? Persistent across reboots?

14



Filesystems metadata

• Name?

– UNIX – anything that is not / or NUL.

What about ”-rf” or * or ?

– Windows, more restrictions. Thins like CON and COM

and PTR. Can cause problems.

– DOS famously had 8.3 filenames.

– Mac used to use : as directory separator.

• Case sensitive? Bob or bob or BoB?

15



• Special files?

– Regular files

– Directories

– Char devices, block devices

– Links (hard, soft)

• Attributes

– Permissions (read, write, execute)

– Owner (user, group)

– Access time (atime, ctime, mtime)

– Current size

16



– Locks

– Hidden

– Immutable / System

– Extended attributes / capabilities

17


