
ECE 598 – Advanced Operating
Systems

Lecture 18

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

5 April 2016

Announcements

• Homework #7 was posted

• Project update

1

Notes on HW7

• More like a 571 HW

• Enabling cache, etc

• Enabling virtual memory, but old legacy ARMv5 version.

Found code online, have to figure out what doing. Why

do you need to enable VM for L1 dcache?

2

Notes from last time

• undelete char is a sigma character

• when you delete a file, the FAT entries are zeroes out.

How can you undelete? Deleted entry still has pointer

to first data block. You have to *really* hope your file

was not fragmented

• exFAT. Designed for use in digital cameras. more than

4GB filesize and 32GB or so disk size. also many

other improvements, not backwards compatible before

windows XP.

3

Ext2 FS

• All structures are little-endian (To aid in moving between

machines)

• Block size 1024-4096 (for various reasons it’s

complicated on Linux to have a block size greater than

the page size)

(also, does blocksize have to be power of 2? Some

CD-ROMs had blocksize of 2336 bytes)

4

Overall Layout

• Boot sector, boot block 1, boot block 2, boot block 3
Boot

Block

Block Group

 0 N

Block Group...

Super

Block

Group

Descriptors Bitmap

Data Block

Bitmap

Inode Inode

Table Data Blocks

• Block group: superblock, fs descriptor, block bitmap,

inode bitmap, inode table, data blocks

5

Block Group

• A bitmap for free/allocated blocks

• A bitmap of allocated inodes

• An inode table

• Possibly a backup of the superblock or block descriptor

table

6

Superblock

• Superblock – located at offset 1024 bytes, 1024 bytes

long Copies scattered throughout (fewer in later versions)

Info on all the inode groups, block groups, etc.

7

Offset Size Description

0 4 Number of inodes in fs
4 8 Number of blocks in fs
8 4 Blocks reserved for root

12 4 Unallocated blocks
16 4 Unallocated inodes
20 4 block num of superblock
24 4 block size shift
28 4 fragment size shift
32 4 blocks in each group
36 4 fragments in each group
40 4 inodes per group
44 4 last mount time
48 4 last write time
52 2 mounts since last fsck
54 2 mounts between fsck
56 2 ext signature (0xef53)
58 2 fs status (dirty or clean)
60 2 what to do on error
62 2 minor version num
64 4 time of last fsck
68 4 interval between fsck
72 4 OS of creator
76 4 major version number
80 2 uid that can use reserved blocks
82 2 gid that can use reserved blocks
84 4 first non-reserved inode
88 2 size of each inode

8

Block Group Descriptor Table

• Follows right after superblock

offset size Description

0 4 address of block usage bitmap
4 4 address of inode usage bitmap
8 4 address of inode table

12 2 number of unallocated blocks in group
14 2 number of unallocated inodes in group
16 2 number of directories in group

9

Block Tables

• Block bitmap – bitmap of blocks (1 used, 0 available)

block group size based on bits in a bitmap. if 4kb, then

32k blocks = 128MB.

10

Inode Tables

• Inode bitmap – bitmap of available inodes

• Inode table – all metadata (except filename) for file

stored in inode

Second entry in inode table points to root directory

inode entries are 128 bytes.

11

offset size desc

0 2 type and permissions
2 2 userid
4 4 lower 32 bits of size
8 4 last access time (atime)

12 4 creation time (ctime)
16 4 modification time (mtime)
20 4 deletion time
24 2 group id
26 2 count of hard links
28 4 disk sectors used by file?
32 4 flags
36 4 os specific

40 - 84 direct pointers 0 - 11
88 4 single indirect pointer
92 4 double indirect pointer
96 4 triple indirect pointer

100 4 generation number (NFS)
104 4 extended ACL
108 4 ACL (directory) else top of filesize
112 4 address of fragment

12

...

ptr0
ptr1
ptr2

ptr11
ptr12
ptr13
ptr14

single indirect

double indirect

triple indirect

.

.

.

. . .

. . .

0

0

0

0

0

0

0

0

0

0

(bs/4)−1

(bs/4)−1

(bs/4)−1

(bs/4)−1

(bs/4)−1

(bs/4)−1

(bs/4)−1

(bs/4)−1

(bs/4)−1

(bs/4)−1

Data Blocks
Directory Entry

(filename)

inode

13

Directory Info

• Directory info –

Superblock links to root directory (usually inode 2)

Directory inode has info/permissions/etc just like a file

The block pointers point to blocks with directory info.

Initial implementation was single linked list. Newer use

hash or tree.

Holds inode, and name (up to 256 chars). inode 0 means

unused.

14

type size

inode of file 4

size of entry 2

length of name 1

file type 1

file name N

• Hard links – multiple directory entries can point to same

inode

• . and .. entries, point to inode of directory entry

15

• Subdirectory entries have name, and inode of directory

16

How to find a file

• Find root directory

• Iterate down subdirectories

• Get inode

17

How to read an inode

• Get blocksize, blocks per group, inodes per group, and

starting address of first group from the superblock

• Determine which block group the inode belongs to

• Read the group descriptor for that block group

• Extract location of the inode table

• Determine index of inode in table

18

• Use the inode block pointers to read file

19

Ext3/Ext4

• Compatible with ext2

• ext3

◦ Htree instead of linked list in directory search

◦ online fs growth

◦ journal

◦ Journal

metadata and data written to journal before commit.

Can be replayed in case of system crash.

• ext4

20

◦ Filesize up to 1Exabyte, filesize 16TB

◦ Extents (Rather than blocks) , an extent can map up

to 128MB of contiguous space in one entry

◦ Pre-allocate space, without having to fill with zeros

(which is slow)

◦ Delayed allocation – only allocate space on flush, so

data more likely to be contiguous

◦ Unlimited subdirectories (32k on ext3 and earlier)

◦ Checksums on journals

◦ Improved timestamps, nanosecond resolution, push

beyond 2038 limit

21

Why use FAT over ext2?

• FAT simpler, easy to code

• FAT supported on all major OSes

• ext2 faster, more robust filename and permissions

22

