ECE 598 — Advanced Operating

Systems
Lecture 18

Vince Weaver
http://web.eece.maine.edu/~vweaver

vincent .weaver@maine.edu

5 April 2016

Announcements

e Homework #7 was posted

e Project update

Notes on HW7

e More like a 571 HW
e Enabling cache, etc

e Enabling virtual memory, but old legacy ARMv5 version.
Found code online, have to figure out what doing. Why
do you need to enable VM for L1 dcache?

Notes from last time

e undelete char is a sigma character

e when you delete a file, the FAT entries are zeroes out.
How can you undelete? Deleted entry still has pointer
to first data block. You have to *really* hope your file
was not fragmented

e exFAT. Designed for use in digital cameras. more than
4GB filesize and 32GB or so disk size. also many
other improvements, not backwards compatible before
windows XP.

-y 3

Ext2 FS

e All structures are little-endian (To aid in moving between
machines)

e Block size 1024-4096 (for wvarious reasons it's
complicated on Linux to have a block size greater than
the page size)

(also, does blocksize have to be power of 27 Some
CD-ROMs had blocksize of 2336 bytes)

Overall Layout

e Boot sector, boot block 1, boot block 2, boot block 3

Boot Block Group Block Group
Block 0 N
Super G"OUP_ Data Block Inode Inode
Block | Descriptors | Bitmap Bitmap | Table | DataBlocks

e Block group: superblock, fs descriptor, block bitmap,
inode bitmap, inode table, data blocks

Block Group

e A bitmap for free/allocated blocks
e A bitmap of allocated inodes
e An inode table

e Possibly a backup of the superblock or block descriptor
table

Superblock

e Superblock — located at offset 1024 bytes, 1024 bytes
long Copies scattered throughout (fewer in later versions)
Info on all the inode groups, block groups, etc.

-y 7

Offset | Size Description
0 4 Number of inodes in fs
4 38 Number of blocks in fs
38 4 Blocks reserved for root
12 4 Unallocated blocks
16 4 Unallocated inodes
20 4 block num of superblock
24 4 block size shift
28 4 fragment size shift
32 4 blocks in each group
36 4 fragments in each group
40 4 inodes per group
44 4 last mount time
438 4 last write time
52 2 mounts since last fsck
54 2 mounts between fsck
56 2 ext signature (0Oxef53)
58 2 fs status (dirty or clean)
60 2 what to do on error
62 2 minor version num
04 4 time of last fsck
68 4 interval between fsck
72 4 OS of creator
76 4 major version number
80 2 uid that can use reserved blocks
82 2 gid that can use reserved blocks
-84 4 first non-reserved inode
88 2 size of each inode

Block Group Descriptor Table

e Follows right after superblock

offset | size Description
0 4 address of block usage bitmap
4 4 address of inode usage bitmap
8 4 address of inode table
12 2 number of unallocated blocks in group
14 2 number of unallocated inodes in group
16 2 number of directories in group

Block Tables

e Block bitmap — bitmap of blocks (1 used, 0 available)
block group size based on bits in a bitmap. if 4kb, then
32k blocks = 128MB.

/Y 10

Inode Tables

e Inode bitmap — bitmap of available inodes

e Inode table — all metadata (except filename) for file
stored in inode
Second entry in inode table points to root directory
Inode entries are 128 bytes.

-y 11

offset size desc

0 2 type and permissions

2 2 userid

4 4 lower 32 bits of size

8 4 last access time (atime)
12 4 creation time (ctime)
16 4 modification time (mtime)
20 4 deletion time

24 2 group id

26 2 count of hard links

28 4 disk sectors used by file?
32 4 flags

36 4 os specific

40 - 84 direct pointers 0 - 11

88 4 single indirect pointer
92 4 double indirect pointer
96 4 triple indirect pointer
100 4 generation number (NFS)
104 4 extended ACL
108 4 ACL (directory) else top of filesize
112 4 address of fragment

12

Directory Entry

(filename)

.

inode

ptr0

ptr1

ptr2

ptrii

ptr12

ptr13

ptri4

/\

Data Blocks

/

single indirec
/ 0 0
(bs/4)-1 (bs/4)-1
/|
double indire(}{ v
P 0 0
(bs/4)-1 (bs/4)-1 7[
|
triple indirec
0
(bs/4)-1

0 0
(bs/4)-1 (bs/4)-1

A !

' Y

0 0
(bs/4)-1 (bs/4)-1

A

\J

0
(bs/4)-1

13

Directory Info

e Directory info —

Superblock links to root directory (usually inode 2)
Directory inode has info/permissions/etc just like a file
The block pointers point to blocks with directory info.
nitial implementation was single linked list. Newer use
nash or tree.

Holds inode, and name (up to 256 chars). inode O means
unused.

14

type size
inode of file 4
size of entry 2
length of name 1
file type 1
file name N

e Hard links — multiple directory entries can point to same
inode

e . and .. entries, point to inode of directory entry

-y 15

e Subdirectory entries have name, and inode of directory

/Y 16

How to find a file

e Find root directory
e |terate down subdirectories

e Get inode

17

How to read an inode

e Get blocksize, blocks per group, inodes per group, and
starting address of first group from the superblock

e Determine which block group the inode belongs to
e Read the group descriptor for that block group
e Extract location of the inode table

e Determine index of inode in table

-y 18

e Use the inode block pointers to read file

19

Ext3/Ext4

e Compatible with ext2
e ext3
o Htree instead of linked list in directory search
o online fs growth
o journal
o Journal
metadata and data written to journal before commit.
Can be replayed in case of system crash.
o ext4d

-y 20

o Filesize up

to 1Exabyte, filesize 16 TB

o Extents (Rather than blocks) , an extent can map up
to 128MB of contiguous space in one entry

o Pre-allocate space, without having to fill with zeros

(which is s
o Delayed al
data more

ow)
ocation — only allocate space on flush, so

ikely to be contiguous

o Unlimited subdirectories (32k on ext3 and earlier)
o Checksums on journals

o Improved timestamps, nanosecond resolution, push
beyond 2038 limit

21

Why use FAT over ext2?

e FAT simpler, easy to code

e FAT supported on all major OSes

e ext2 faster, more robust filename and permissions

-y 22

