
ECE 598 – Advanced Operating
Systems

Lecture 20

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

12 April 2016

http://web.eece.maine.edu/~vweaver

Announcements

• Homework #8 was posted

• Homework #7 has been graded

1

HW#7 Review

Raspberry Pi A+ Memory Benchmarks, 1MBx16

memset()

HW config Code 64Hz 700MHz cycles seconds bandwidth

No Cache C 1B 94 936754552 1.34s 12.0 MB/s

L1-I$ C 1B 32 355098645 0.51s 31.5 MB/s

L1-I$+brpred C 1B 24 271038891 0.39s 41.3 MB/s

L1-I$+brpred+D$ C 1B 10 116346597 0.17s 96.3 MB/s

L1-I$+brpred+D$ C 4B 3 28633484 0.041s 391 MB/s

L1-I$+brpred+D$ ASM 64B 1 8829849 0.013s 1268 MB/s

Linux on bplus maxes out around 1.4GB/s

Theoretical Maximum speed of LPDDR2@400MHZ =

8GB/s

2

1. Notes on the measurements

64Hz coarse. So might see some jumps in measures

For first, sometimes varies 130/95/85. Not sure why,

thought it might be alignment, but I played with

alignment and didn’t see to affect it. Interrupts in

background?

I ask for MB/s in addition to ticks, some people forgot,

or calculated wrong or used wrong units.

2. Something cool, not-byte-by-byte copy

3

What did people do? Mostly 32-bit copy.

Some, loop unrolling.

Lots of issues.

Need to be aligned on 4-byte boundary? What happens

if not? Some architectures will crash. ARM11 possibly

fixes it in kernel. often slower.

Usually have to handle the first 0-3 bytes of unaligned

on front, do fast 4-byte aligned copies, then fixup at end

too.

Note that for memset the value to set is an integer but

really only bottom 8 bits matter. Need to replicate 8-bits

4

to repeat in 32-bit pattern before writing 32-bits at a

time.

Some people saw improvement even when not using 32-

bit write. Loop unrolling? Fewer branches?

Handle sizes < 4.

I gathered results using assembly 64-byte copy, as found

in Linux kernel source code.

Some implementations might detect size of block you

are setting and use simple for smaller, more complex for

bigger.

3. VM question.

5

multi-tasking made easier? How? You could argue VM

makes multi-tasking harder.

4. Filesystem: yes you can have access to big block of raw

disk w/o filesystem. Makes things hard, user has to keep

track of data. Some databases do this (why?) hold

more data, speed

6

Graphics Interface History

• Teletypes

• Vector Displays

• CRTs

• LCD displays

7

Video Display Technology

• Atari 2600 – Racing the Beam

4k ROM, 128 bytes RAM, 40-pixel (5 byte) framebuffer

3 sprites

all calculation done during the retraces

• SNES Tile/Sprite Based

RAM getting cheap enough can have framebuffers, but

bandwidth still not that great.

Use tiles, that let you split the display into tiles, with

each large tile specified by a single byte.

8

Video Adapters – Framebuffers

• Just an array of bytes that get displayed on the screen.

• Bits per pixel

1 – monochrome

4 – 16 colors

8 – 256 colors (usually palette)

15 – rgb 555

16 – rgb 565 ”true color”

24 – rgb 888

32 – rgba

9

• Can be large: 1024x768x24bpp = 2.4MB, to update at

60Hz = 141MB/s

• Bit-planes

• Palette

10

Video Adapters – GPUs

• Draw lots of triangles, really fast

• Can divide screen into small sections, and calculate

massively parallel.

• OpenGL/Direct3d

• Triangles

• Textures

11

• Z-buffers

• Shaders

• Can make a card with no framebuffer? Text just written

to texture and scaled to fill screen?

12

VGA Display example

• VGA text

• Memory mapped, IO ports

• Mode setting

• VESA BIOS

• “Mode X”

• Bitplanes

13

• Colors

• Loadable fonts

14

Linux graphic interface

• originally, none. VGA Text only

X11 drove software directly.

• Attempt at GGI/KGI, Linus nixed it

• Framebuffer devices got in. Why? Well some machines

had no textmode without it

• Gradually the DRI interface (Direct Rendering Interface)

started providing abstractions needed for modern video

15

cards.

DRI1/DRI2/DRI3

DRM – event queueing?

KMS – kernel mode setting

GEM/TTM – memory allocation

MESA3D – handles OpenGL translation

16

Higher Level

• X11 – client/server, network transparent

MIT, 1984

• Wayland – Compositing Manager is mandatory

Draw to an offscreen buffer, window manager copy to

screen

Can have 3d compositor, fancy effects

17

Even Higher

• Libraries like Qt, Gtk, (historically Motif)

• Desktops like KDE, GNOME, XFCE

18

Raspberry Pi Framebuffer

• Pi can do advanced 3D GPU graphics.

Not documented well (but getting better)

But it is complex, more than we need for a simple OS

• The GPU firmware does provide for a simple flat

framebuffer mode if you ask it nicely

19

Pi GPU interface

http://petewarden.com/2014/08/07/how-to-optimize-raspberry-pi-code-using-its-gpu/

https://github.com/raspberrypi/firmware/wiki/Mailboxes

20

http://petewarden.com/2014/08/07/how-to-optimize-raspberry-pi-code-using-its-gpu/
https://github.com/raspberrypi/firmware/wiki/Mailboxes

Raspberry Pi Mailbox Interface

• How the ARM CPU communicates with the GPU that

really run things

• Mailbox channels: MAILBOX POWER 0

MAILBOX FRAMEBUFFER 1

MAILBOX VIRT UART 2

MAILBOX VCHIQ 3

MAILBOX LED 4

MAILBOX BUTTONS 5

MAILBOX TOUCHSCREEN 6

21

MAILBOX PROPERTY TO VC 8

MAILBOX PROPERTY FROM VC 9

• Property tags contains a lot of the stuff we get from

ATAGS as well as reading temperature interface.

• Mailbox

22

Address Size Name Description R/ W

0x2000b880 4 Read Receive mail R

0x2000b890 4 Poll Check mail R

0x2000b894 4 Sender Sender info R

0x2000b898 4 Status Infor R

0x2000b89c 4 Config Settings RW

0x2000b8a0 4 Write Send mail W

• to send to a mailbox:

– sender waits until the Status field has a 0 in the

MAIL FULL bit

23

– sender writes to Write such that the lowest 4 bits are

the mailbox to write to, and the upper 28 bits are the

message to write.

How can you make the address of the message have

the bottom 4 bits be zero?

• To read a mailbox:

– receiver waits until the Status field has a 0 in the

MAIL EMPTY

– receiver reads from Read.

– receiver confirms the message is for the correct

24

mailbox, and tries again if not.

• Talk to GPU through this mailbox interface. Lots of

things set in it (the GPU is in control on Pi). Things

like power, clock enables, etc.

25

Raspberry Pi Framebuffer Interface

• You can send it an address to a piece of memory to use

as a framebuffer and it will draw it to the screen over

HDMI.
• struct frame_buffer_info_type {

int phys_x ,phys_y; /* IN: Physical Width / Height */

int virt_x ,virt_y; /* IN: Virtual Width / Height */

int pitch; /* OUT: bytes per row */

int depth; /* IN: bits per pixel */

int x,y; /* IN: offset to skip when copying fb */

int pointer; /* OUT: pointer to the framebuffer */

int size; /* OUT: size of the framebuffer */

};

• Write the address of FrameBufferInfo + 0x40000000 to

26

mailbox 1 (40000000 means don’t cache)

Read the result from mailbox 1. If it is not zero, we

didn’t ask for a proper frame buffer.

GPU firmware returns a framebuffer you can write to.

Copy our images to the pointer, and they will appear on

screen!

27

Using a Framebuffer

• How big is it?

• Why might it not just be X*Y*(bpp/8) bytes big?

Alignment issues? Powers of two? Weird hardware

reasons?

• Things like R/G/B order, padding bits, bits grouped

together (on Apple II groups of 7 bytes), etc

• Otherwise it’s just an exercise is calculating start address

and then copying values

28

• How do you calculate colors?

29

Putting a Pixel

• Depends a bit on the graphics mode you request

• For simplicity, request 800x600x24-bit

• Get back pointer, size, pitch

• Each X row has R,G,B bytes repeated for each pixel

• To get to next row increment by pitch value (bytes per

row)

fb[(x*3)+(y*pitch)]=r

30

fb[(x*3)+(y*pitch)+1]=g

fb[(x*3)+(y*pitch)+2]=b

• pitch returned by the GPU. Normally it would just be

(maxy*bpp)/8, but it can vary depending on how the

hardware arranges the bits.

31

Drawing a Gradient

• Just draw a horizontal line, incrementing the color for

each line

32

Console Display

• Font / VGA Fonts

• console framebuffer. Color?

• scrolling

• backspace

• ANSI emulation

33

Bitmapped Font

• Each character an 8x8 (or 8x16, or similar) pattern

• unsigned char smiley [8]={

0x7e , /* ****** */

0x81 , /* * * */

0xa5 , /* * * * * */

0x81 , /* * * */

0xa5 , /* * * * * */

0x99 , /* * ** * */

0x81 , /* * * */

0x7e , /* ****** */

};

void put_smiley(int xoff , int yoff , int color) {

for(y=0;y<8;y++) {

for(x=0;x<8;x++) {

if (simley[y]&(1<<(7-x))) {

putpixel(color ,x+xoff ,y+yoff);

• 34

}

}

}

}

• Can find source of fonts online, VGA fonts. Just a binary

set of bitmapped characters indexed by ASCII code.

• Usually 8x16 though; the custom font used in the

homework is a hand-made 8x8 one

35

