
ECE 598 – Advanced Operating
Systems

Lecture 22

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

19 April 2016



Announcements

• Project update

• HW#9 posted, a bit late

• Midterm next Thursday

1



Homework #8

1. Filename in inode? UNIX no, mostly due to hard

links. Can be other reasons too... what happens when

you change filename, you’d have to somehow grow the

inode; inodes were traditionally a fixed size.

2. Ext2 overhead, 1k blocksize. Note power of 2 vs

marketing bytes

(a) with no indirect, 12 entries*1k = 12k

(b) with single, 12k+((1k/4)*1k) = 268k

2



(c) with double, 12k+256k+(256*256*1k) = 65804k

(64MB)

(d) with triple, 12k+256k+65804k+(256*256*256*1k) =

16,843,288k = 16GB

(e) overhead = inode + 1k (single) + 1k+256k (double)

+ 1k+256k+64M(triple) = roughly 66,051k (64MB)

fairly small

(f) (not a question) 4kb blocksize, triple =

48k+1024k+4GB+16TB (with roughly 4GB overhead)

3. fat vs ext2

speed? speed doing what?

3



maximum filesize permissions simplicity journaling is

technically an ext3 feature portability

4. ls vs du

shows holes in file

man du should help

also shows blocks used? but not things like indirect

blocks, don’t think there’s a Linux syscall to report that

kind of thing.

5. proc info generated on the fly (doesn’t necessarily even

live in ram, some of the /proc files are huge)

4



6. filesystems

• reiserfs

• hostfs (UML)

• jffs (journaling flash filesystem)

• efs, an SGI filesystem, not the windows encrypting fs

• NTFS

• coda

• overlayfs

5



Processes – a Review

• Multiprogramming – multiple processes run at once

• Context switch – each process has own program counter

saved and restored as well as other state (registers)

• OSes often have many things running, often in

background.

On Linux/UNIX sometimes called daemons

Can use top or ps to view them.

• Creating new: on Unix its fork/exec, windows

6



CreateProcess

• Children live in different address space, even though it

is a copy of parent

• Process termination: what happens?

Resources cleaned up. atexit routines run.

How does it happen?

exit() syscall (or return from main).

Killed by a signal.

Error

• Unix process hierarchy.

7



Parent and children, etc. not strictly possible to give

your children away, although init inherits orphans

• Process control block.

8



Process States

• Running – on CPU

• Ready – ready but no CPU available

• Blocked – waiting on I/O or resource

• Terminated

9



Scheduling

• Picks which jobs to run when

• Complex problem

• Simple: batch scheduling. Each run to completion.

• Multi-tasking.

• Computation often mixed with slow I/O

• Avoid context switching if possible

10



• Can switch when task voluntarily yields, if kernel blocks

on I/O, or if timeslice runs out

• Simple round-robin scheduling

• Different type of processes. Long-running CPU bound

where extra latency doesn’t matter? Interactive things

like GUI interfaces, video games, music playing where

too much delay is bad? Real time constraints?

11



Scheduling Goals

• All: fairness, balance

• Batch: throughput (max jobs/hour), turnaround (time

from submission to completion), CPU utilization (want

it busy)

• Interactive: fast response, doesn’t annoy users

• Real-time: meet deadlines, determinism

12



Batch Scheduling

• First-come-first-served (what if 2-day long job submitted

first)

• Shortest job first

• Many others

13



Interactive Scheduling

• Round-robin

• Priority – “nice” on UNIX

• Multiple Queues

• Others (shortest process, guaranteed, lottery)

• Fair scheduling – per user rather than per process

14



Real-time Scheduling

• Complex, more examples in 471 or real time OS course

15



The Linux Scheduler

• People often propose modifying the scheduler. That is

tricky.

• Scheduler picks which jobs to run when.

• Optimal scheduler hard. What makes sense for a long-

running HPC job doesn’t necessarily make sense for an

interactive GUI session. Also things like I/O (disk) get

involved.

• You don’t want it to have high latency

16



• Linux originally had a simple circular scheduler. Then

for 2.4 through 2.6 had an O(N) scheduler

• Then in 2.6 until 2.6.23 had an O(1) scheduler

(constant time, no many how many processes).

• Currently the “Completely Fair Scheduler” (with lots of

drama). Is O(log N). Implementation of “weighted fair

queuing”

• How do you schedule? Power? Per-task (5 jobs,

each get 20%). Per user? (5 users, each get 20%).

17



Per-process? Per-thread? Multi-processors? Hyper-

threading? Heterogeneous cores? Thermal issues?

18


