ECE 598 — Advanced Operating

Systems
Lecture 22

Vince Weaver
http://web.eece.maine.edu/~vweaver

vincent .weaver@maine.edu

19 April 2016



Announcements

e Project update
e HW+9 posted, a bit late

e Midterm next Thursday



Homework #38

1. Filename in inode? UNIX no, mostly due to hard
links. Can be other reasons too... what happens when
you change filename, you'd have to somehow grow the
inode; inodes were traditionally a fixed size.

2. Ext2 overhead, 1k blocksize. Note power of 2 vs
marketing bytes

(a) with no indirect, 12 entries*1k = 12k
(b) with single, 12k-+((1k/4)*1k) = 268k

-y 2



(c) with double, 12k+256k+(256*256*1k) = 65804k
(64MB)

(d) with triple, 12k+256k+65804k-+(256*256*256*1k) =
16,843,288k = 16GB

(e) overhead = inode + 1k (single) + 1k+256k (double)
+ 1k+256k-+64M(triple) = roughly 66,051k (64MB)
fairly small

(f) (not a question) 4kb blocksize, triple =
48k+1024k+4GB+16TB (with roughly 4GB overhead)

3. fat vs ext2
speed? speed doing what?

-y 3



maximum filesize permissions simplicity journaling is
technically an ext3 feature portability

4. |s vs du

shows holes in file

man du should help

also shows blocks used? but not things like indirect
blocks, don't think there's a Linux syscall to report that
kind of thing.

5. proc info generated on the fly (doesn't necessarily even
live in ram, some of the /proc files are huge)

-y 1



0. filesystems

e reiserfs

e hostfs (UML)

e jffs (journaling flash filesystem)

e efs, an SGI filesystem, not the windows encrypting fs
e NTFS

e coda

e overlayfs



Processes — a Review

e Multiprogramming — multiple processes run at once

e Context switch — each process has own program counter
saved and restored as well as other state (registers)

e OSes often have many things running, often in
background.
On Linux/UNIX sometimes called daemons
Can use top or ps to view them.

e Creating new: on Unix its fork/exec, windows

-y 6



CreateProcess

e Children live in different address space, even though it
Is a copy of parent

e Process termination: what happens?
Resources cleaned up. atexit routines run.
How does it happen?

exit () syscall (or return from main).
Killed by a signal.

Error

e Unix process hierarchy.

-y ;



Parent and children, etc. not strictly possible to give
your children away, although init inherits orphans

e Process control block.



Process States

e Running — on CPU
e Ready — ready but no CPU available
e Blocked — waiting on |/O or resource

e [erminated



Scheduling

e Picks which jobs to run when

e Complex problem

e Simple: batch scheduling. Each run to completion.
e Multi-tasking.

e Computation often mixed with slow 1/0

e Avoid context switching if possible

10



e Can switch when task voluntarily yields, if kernel blocks
on 1/O, or if timeslice runs out

e Simple round-robin scheduling

e Different type of processes. Long-running CPU bound
where extra latency doesn't matter? Interactive things
like GUI interfaces, video games, music playing where
too much delay is bad? Real time constraints?

/Y 11



Scheduling Goals

e All: fairness, balance

e Batch: throughput (max jobs/hour), turnaround (time
from submission to completion), CPU utilization (want
it busy)

e Interactive: fast response, doesn’'t annoy users

e Real-time: meet deadlines, determinism

-y 12



Batch Scheduling

e First-come-first-served (what if 2-day long job submitted
first)

e Shortest job first

e Many others

-y 13



Interactive Scheduling

e Round-robin

e Priority — “nice” on UNIX

e Multiple Queues

e Others (shortest process, guaranteed, lottery)

e Fair scheduling — per user rather than per process

14



Real-time Scheduling

e Complex, more examples in 471 or real time OS course

-y 15



The Linux Scheduler

e People often propose modifying the scheduler. That is
tricky.

e Scheduler picks which jobs to run when.

e Optimal scheduler hard. What makes sense for a long-
running HPC job doesn’t necessarily make sense for an
interactive GUI session. Also things like |/O (disk) get
involved.

e You don't want it to have high latency

-y 16



e Linux originally had a simple circular scheduler. Then
for 2.4 through 2.6 had an O(N) scheduler

e Then in 2.6 until 2.6.23 had an O(1) scheduler
(constant time, no many how many processes).

e Currently the “Completely Fair Scheduler” (with lots of
drama). Is O(log N). Implementation of “weighted fair
queuing”

e How do you schedule? Power? Per-task (5 jobs,
each get 20%). Per user? (5 users, each get 20%).

-y 17



Per-process? Per-thread? Multi-processors? Hyper-
threading? Heterogeneous cores? Thermal issues?

/Y 18



