
ECE 598 – Advanced Operating
Systems

Lecture 24

Vince Weaver

http://www.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

26 April 2016

http://www.eece.maine.edu/~vweaver


Announcements

• I will post a HW#10 that is short answer, practice for

the second midterm, with solution.

• There will not be a final coding project. Was hoping to

have a multi-tasking one but the assembly language is

hard and you will be busy with your projects.

• Don’t forget project presentations, there should be time

for everyone to present on May 5th

1



HW#9 Review

• Font printing not a problem?

Didn’t cover transparency

• Gradient – example code. Tricky with division and such

when not multiple of 256

• Something cool. marie.fnt is only an 8x8 font as well

as Tolkien Elf Runes which is why it does weird things

• Alignment: align on boundary

Why on GPU? For the interface we need 4-bits to pass

2



channel number, so we need a pointer where the bottom

4 bits are zero

3



Midterm Review

• Benefit/Downside to using an operating system

• Virtual Memory

One operating system feature made easier by VM?

• Filesystem

pseudo-filsystems

reasons to use filesystems

filesystem features: holes, etc.

• Graphics

4



Why is the GPU in the Pi unusual?

Why is it aligned?

• Scheduling

Scheduler should be fast

Round-robin is simplest

• Threading

User vs Kernel threads

• Multiprocessors/Locking

5



Multi-Processing

6



Hardware Concerns

• Multi-processing

Symmetric, Asymmetric

SMP vs CMP (Symmetric and Chip Multi-processing)

• Multi-threading

(Hyperthreading, SMT)

• Bus (small amounts) – for memory just puts request on

the bus. If busy it waits. Why can this be bad if large

7



CPUs?

Cache – each CPU has local cache. Have to keep

cache coherent though. Large (¿16?) traditional

cache coherence doesn’t scale well. Then use crossbars,

switching networks. Gets more complex.

• Shared memory vs Distributed

Shared memory, a CPU can write a value to memory,

read it back and it will be different (another CPU can

write to it)

• UMA, NUMA, CC-NUMA (cache-coherent)

8



Non-uniform memory access

• How many copies of the OS? One per core or single

image? One per core is more like a cluster.

9



Multi-Processor Resource Sharing

• How are resources shared in SMP system?

• Any core can access any of the devices. Need locking.

• What about interrupts?

– Have one core handle all interrupts?

Might have better cache behavior

– Round-robin interrupts to each core?

Reduces load on core0 but hurts others.

10



– Balance interrupt load across processors?

11



OS Support for SMP

• How can we have multiple cores share one OS-image?

• Big-kernel-lock, but poor performance

• Only parts of OS happen at once. Scheduler can run

at same time as serial driver or filesystem read or page

fault

• Split up with fine-grained critical sections.

• Suddenly deadlocks are a problem.

12



• What kinds of locks?

– Spinning easiest, but poor performance.

– Switch threads. Multi-threading OS?

– Linux has kernel threads (look in top for things starting

with k or rcu). Interrupt handlers have fast handler

and worker threads.

13



SMP Scheduling

• 4 processors, 5 jobs

How to avoid ping-ponging? Better to make two

processes slow or all of them?

• Gang scheduling – if you have processes that are using

IPC (or multithreads) you want to schedule all at the

same time so can communicate without having to wait

through multiple context switches.

• Keeping jobs on same CPU started on (why is this

14



good?) Cache behavior. TLB, NUMA.

Why might you want to move them?

• When might you want to run everything on one core

even though lots available? Power! Can put rest of

CPUs to sleep.

• How do you online/offline hotswap processors.

15



Initializing SMP on ARM

• Detecting the processors

• Need to power them up

• Then need to somehow (implementation dependent) set

the PC for each

• Typically leave them waiting in WFE (similar to WFI but

also will wait for SEV event). SEV sends event to all

cores waking any in WFE state.

16



• On x86 IPI (inter-processor interrupts) are used during

bringup

17



Race Conditions

• Shared counter address

RMW on ARM

Thread A reads value into reg

Context switch happens

Thread B reads value into reg, increments, writes out

Context switch back to A

increments value, writes out

What happened?

What should value be?

18



Critical Sections

• Want mutual exclusion, only one can access structure at

once

1. no two processes can be inside critical section at once

2. no assumption can be made about speed of CPU

3. no process not in critical section may block other

processes

4. no process should wait forever

19



How to avoid

• Disable interrupts. Heavy handed, only works on single-

core machines.

• Locks/mutex/semaphore

20



Mutex

• mutex lock: if unlocked (0), then it sets lock and returns

if locked, returns 1, does not enter.

what do we do if locked? Busy wait? (spinlock) re-

schedule (yield)?

• mutex unlock: sets variable to zero

21



Semaphore

• Up/Down

• Wait in queue

• Blocking

• As lock frees, the job waiting is woken up

22



Locking Primitives

• fetch and add (bus lock for multiple cores), xadd (x86)

• test and set (atomically test value and set to 1)

• test and test and set

• compare-and-swap – Atomic swap instruction SWP

(ARM before v6, deprecated)

x86 CMPXCHG

Does both load and store in one instruction!

23



Why bad? Longer interrupt latency (can’t interrupt

atomic op)

Especially bad in multi-core

• load-link/store conditional

Load a value from memory

Later store instruction to same memory address. Only

succeeds if no other stores to that memory location in

interim.

ldrex/strex (ARMv6 and later)

• Transactional Memory

24



Locking Primitives

• can be shown to be equivalent

• how swap works:

lock is 0 (free). r1=1; swap r1,lock

now r1=0 (was free), lock=1 (in use)

lock is 1 (not-free). r1=1, swap r1,lock

now r1=1 (not-free), lock still==1 (in use)

25



Memory Barriers

• Not a lock, but might be needed when doing locking

• Modern out-of-order processors can execute loads or

stores out-of-order

• What happens a load or store bypasses a lock instruction?

• Processor Memory Ordering Models, not fun

• Technically on BCM2835 we need a memory barrier any

time we switch between I/O blocks (i.e. from serial

26



to GPIO, etc.) according to documentation, otherwise

loads could return out of order

27



Resources

• If you do not give exclusive access, bad things can

happen. Imagine one process printing a document, half

done and another task switched in and also starts writing

to the printer.

• Pre-emptible resource

• Non-preemptible resource.

• Usually protected by locks.

28



• More complex if protected by two or more locks (need

two resources)

29



Deadlock

• Two processes both waiting for the other to finish, get

stuck

• One possibility is a bad combination of locks, program

gets stuck

• P1 takes Lock A. P2 takes Lock B. P1 then tries to take

lock B and P2 tries to take Lock A.

30



Livelock

• Processes change state, but still no forward progress.

• Two people trying to avoid each other in a hall.

• Can be harder to detect

31



Starvation

• Not really a deadlock, but if there’s a minor amount

of unfairness in the locking mechanism one process

might get “starved” (i.e. never get a chance to run)

even though the other processes are properly taking and

freeing the locks.

32



How to avoid Deadlock

• Don’t write buggy code

• Reboot the system

• Kill off stuck processes

• Pre-emption (let one of the stuck processes run anyway)

• Rollback (checkpoint occasionally)

33



Priority Inversion

• Low-importance task interrupts a high-priority one

• Say you have a camera. Low-priority job takes lock to

take picture.

• High-priority task wants to use the camera, spins waiting

for it to be free. But since it is high-priority, the low

priority task can never run to free the lock.

34



Locking in your OS

• When?

• Interrupts

• Multi-processor

• Pre-emptive kernel (used for lower latencies)

• Big-kernel lock? Fine-grained locking? Transactional

memory?

35



• Semaphores? Mutexes

• Linux futexes?

36



Does our OS need locks?

• We don’t have many shared resources yet.

• Setting/reading the time, if not-atomic and updated by

interrupt

• What if multiple processes try to write the console at

the same time?

37



IPC – Inter-Process Communication

• Processes want to communicate with each other.

Examples?

• Two issues:

getting the message across

synchronizing

• signals

• network, message passing (send, receive)

38



• shared memory (mmap)

39



Linux

• Signals and Signal handlers

Very much like interrupts

Concurrency issues much like threading

• Pipes

stdout of one program to stdin of another

one-way (half duplex)

ls — sort

pipe system call / dup

40



C library has popen()

• FIFOs (named pipes)

exist as file on filesystem

• SystemV IPC

shared memory, semaphores ipcs

• Just use mmap

• Unix domain sockets

Can send file descriptors across

41



• Splice – move data from fd to pipe w/o a copy? VM

magic?

• Sendfile. zero copy?

42



IPC in the news

• kdbus – dbus into kernel to make it faster

Desktop Bus, D-Bus

allows communication on a desktop bus between apps

and kernel

example – incoming skype call can notify system, and

apps like the audio adjust and mp3 player can pause

music and set up microphone

multicast

example – battery low notification, apps can listen, save

43



state, prepare to shut down.

• Kernel developers resist it

Most because who has to maintain it?

Also how well designed is it? can it be used by other

tools?

We already have a lot of IPC in the kernel, can it be

made generic?

It is faster, but what if user programs just bloat to negate

this?

• Worse is better / the right thing

44



• New Jersey vs MIT

• Is it better to spend lots of time coming up with a

perfect specification on paper, then implement it?

• Is quicker/easier to understand better than complex and

perfect?

• Should you come up with something “good enough” and

let it grow naturally?

45


